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This constitutes the final technical report for the subject grant. The grant was administered

through Arizona State University, and the principle investigator was Dr. David K.
Schmidt. During this period, the principle investigator and graduate researchers supported
by the project were all affiliated with Arizona State University's Aerospace Research Center
in the College of Engineering and Applied Sciences, located in Tempe, Arizona 85287.
This grant is a direct follow-on to grant number NAG 1-758, with the same principle
investigator. Hence, it may be helpful to view these two grant activities as one research

program.

The research focus of this grant was to address the modeling, including model reduction,
of flexible aerospace vehicles, with special emphasis on models used in dynamic analysis
and/or guidance and control system design. In the modeling, it is critical that the key
aspects of the system being modeled that are of import in the application for the model
(e.g., feedback system design) be captured in the model. In this work, therefore, aspects of
the vehicle dynamics critical to control design were important.

In this regard, fundamental contributions were made in the areas of stability robustness
analysis techniques, model reduction techniques, and literal approximations for key
dynamic characteristics of flexible vehicles. All these areas are related. In the development
of a model, approximations are always involved, so control systems designed using these
models must be robust against uncertainties in these models. On the other hand, it is
imperative the the systems analyst and designed be aware of the sources of possible
uncertainty, and modeling itself is critical in developing this awareness.

The graduate researchers supported by the current grant are the following:

Mr. Brett Newman, Research Associate in ASU's Aerospace Research Center. Mr.
Newman is also pursuing a Doctorate in Aerospace Engineering from
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Salas is pursuing his M.S. graduate degree in Aerospace Engineering at
ASU. This individual had responsibilities for numerical analysis in support
of this grant activity.

Conference papers presented, reporting technical results from this (current) grant are as
follows:
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1) Newman, B. and Schmidt, D.K., "A Sequential Approach to Multivariable

Stability Robustness Analysis," AIAA paper 91-2771, presented at, and appearing
the Proceeding of the 1991 Guidance, Navigation, and Control Conference, New
Orleans, LA, August, 1991.

2) Newman, B. and Schmidt, D.K., "New Plant and Controller Order Reduction
Results With Weighted Balancing," AIAA paper 91-2805, presented at, and



appearingin theProceedingsof the1991 Guidance, Navigation, and Control
Conference, New Orleans, LA, August, 1991.

The following papers have been, or are being submitted for publication in archival journals:

1) Newman, B. and Schmidt, D.K., "On The Control of Elastic Vehicles - Model
Simplification and Stability Robusmess," to be submitted to the [EEE Control
Systems Magazine.

2) Schmidt, D.K. and Newman, B., "Multivariable Flight Control Synthesis and
Literal Robusmess Analysis for an Aeroelastic Vehicle," To be submitted to the
Journal of Guidance, Control, and Dynamics.: ....

3 and 4) Conference papers 1 and 2 above are also being submitted to the Journal
of Guidance, Control, and Dynamics. : :

Copies of all the above papers are included in Appendices A through C, respectively, of
this report.
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Abstract

In sequential loop closure, the importance of evaluating the
stability and stability robustness at the intermediate loop closures
is well known, yet how the stability and stability robustness
evaluated at the intermediate steps contribute to the stability and
stability robustness of the overall feedback system must be
developed. An analysis of the complete feedback system reveals
the muhivariable Nyquist contributions from the intermediate

loop closures. It is also shown that the results greatly simplify if
fre.quency separation exists between the intermediate loops. The
analysis is presented with a two-step loop closure procedure
using "inner" and "outer" loops which can be generalized to

multi-step situations. The control of the longitudinal dynamics
of an aircraft is addressed to further clarify and demonstrate the
results.

AIAA-g1-Z'T?1.CP
A Sequential Approach To

Multivariable Stability Robustness Analysis

Brett Newman" and David K+ Schmidt'"

Aerospace Research Center
Arizona State University

Tempe, Arizona

diagram corresponding to det [I + Ko(s)Go(s)] where Go(s ) is
the effective plant for the outer loop closure. Also, with only the

inner loops closed, if unstable system modes remain (which are
to be stabilized by the outer loops), then the standard

muhivariable stability robustness theory 3,4 applied at this
intermediate step is not valid.

Inner Loop Closure :

yq(]) +

o(s I
Introduction

Consider the generic muhivariable feedback loop in
Figure 1 with responses y, control inputs u, response
commands Yc, plant transfer function matrix G(s), and

compensator transfer function matrix K(s). Usually, the
compensator must stabilize all unstable modes present in the
plant. Further, the compensator must ensure this stability in the
presence of plant modeling errors.

Frequency domain criteria for stability and stability
robustness such as muhivariable Nyquist stability theory are

well known and extensively documented. TM These tools are
directly applicable to a given multivariable compensator in the
format of Figure 1. For example, stability and stability
robusmess are indicated by the Nyquist diagram corresponding
to det [I + K(s)G(s)]. However, if the compensator is

developed with a sequential loop closure strategy, 5,6 there exists

a void concerning the relationship between the stability and
stability robustness indicated after each loop closure and the
stability and stability robusmess of the complete feedback

system.

yc(s) + _ u(s) _ y(s)

Figure I. Generic Feedback Loop

For example, consider the two-step loop closures shown
in Figures 2 and 3, where the "inner loops" consists of outputs

.'i and the "outer loops" consists ot outputs Yo. It is important to
observe here that the inner and outer loops can be _.
Further, observe that the block diagram structure in Figure 2 can

be manipulated into the more classical looking inner and outer
loop structure depicted in Figure 4 if Ki(s) and Gi(s) are
nonsingular. However, for ease of expositionthe structure of

Figure 2 will be considered.
With only the inner loops closed, system stability and

robustness are indicated by the Nyquist diagram corresponding
to det [I + Ki(s)Gi(s)], while after the outer loops are closed,

system stability and robustness are indicated by the Nyquist

Copyright © 1991 by Brcu Newman and David K. Schmidt. Published by
theAmericanInstituteofAeronauticsandAstronautics,Inc.withpermission.

" ResearchAssociate:DoctoralStudent,SchoolOf AeronaoticsAnd
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Oumr Loop Closure :

y_U,_(s) ..... i

G_s)

Figure 2. Two-Step LoopClosure

Inner Loop Closure :
. . +.. .........

Yci(S) +

...... e,:;..... ]

Outer Loop Closure :

Gds)

Figure 3. Two-Step Loop Closure
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yet(s) = 0

Kil(s) Ko(s)_ Go(s)Gi i(s) yo(S)

K[l(S)Uo(S) - _,wJ _ _,owJ

Figure 4. Classical Inner And Outer Loop Structure

The goal of this paper is to relate the stability and ZT =0
stability robustness evaluated at each stage of the (multivariable)
sequential loop closure to that of the final feedback system, to
offer insight, and to suggest a multivariable extension to this
frequently used classical synthesis technique.

NT = -PT (7)

Nyquist Stability And Stability Robustness
St:lbility of the closed-loop system in Figure I is

completely determined by the roots of the closed-loop

characteristic polynomial 0el(S). The closed-loop characteristic
polynomial is related to the open-loop characteristic polynomial,

0ol(s), by the well known relationship 7

OcKs)
-- = dell[ + K(s)G(s)l
%Ks) (1)

Application of the principle of the argument 8 to Eq. (I) yields

N(0,det[l + Kfs)G(s)],CRHP) = Z - P (2)

where the notation N(0,det [I + K(s)G(s)],CRHP) denotes the
number of encirclements of the origin made by the Nyquist
diagram (i.e., the mapping of det [[ + K(s)G(s)l as s traverses
the contour CRN P, which encloses the entire right-half of the
complex plane). Further, Z is the number of closed-loop poles

(roots of 0el(S)) inside CRHP, and P is the number of open-loop

poles (roots of 0ol(S)) inside CRH P. For closed-loop asymptotic
stability, no closed-loop poles may lie in the right-half plane, or

Z :0 _ N : -P (3)

In other words, the Nyquist diagram must have the correct
number of encirclements of the origin, namely -P.

The feedback loop in Figure I must also maintain
stability in the presence of plant modeling errors. One common

way to represent this error is with additive error AG(s) defined
by

aG(s) = Gr(s) - G(s) (4)

where GT(S) denotes the "true" linear plant.
For the true feedback system, Eq. (1) becomes

0cl'_(s) = det[I + K(s)Gr(s)l

COlT(s) (5)

where 0clT(S) and 0OiT(S) denote the true system's closed-loop
and open-loop characteristic polynomials, respectively.
Application of the principle of the argument 8 to Eq. (5) yields

NT(0,det[I + K(S)GT(S)],CRHP) : ZT - PT (6)

where NT(0,det [I + K(S)GT(S)],CRH P) denotes the number of
encirclements of the origin by the true system's Nyquist
diagram, ZT is the number of true closed-loop poles in the right-
half plane, and PT is the number of true open-loop poles in the
right-half plane. For closed-19o p asymptotic stability of the true
system, none of it's closed-loop poles may lie in the right-half
pl:me, or

It can be shown 4 Ihat if
1. The nominal closed-loop system is asymptotically stable or

N = -P (see Eq. (3)), and
2. The required number of encirclements of the origin is the

same for both nominal and true closed-loop systems or P =
PT (see Eqs. (3) and (7)),

then a necessary and sufficient condition guaranteeing closed-
loop asymptotic stability of the true system is

det[[ + K(s)G(s,r..)]l s _ CRHP, 0 _i_ S l _: 0 (8)

where G{s,E) is given as

G(s,c) = G(s) + _:AG(s) (9)

Note that E = 0 and ¢_..= I corresponds to the nominal and true
plants, respectively. The geometric concept associated with Eq.
(8) is that under assumptions 1. and 2., if as the nominal
Nyquist diagram is continuously warped to the shape of the true
Nyquist diagram, the number of encirclements of the origin
remains unchanged, closed-loop asymptotic stability of the true
system is assured. In other words, to maintain stability in the

presence of modeling errors the mapping det [I + K(s)G(s,_;)]i
se CRIIp, f)< _:$ I must not pass through the origin. Two
sufficient conditions, developed from Eq. (8), guaranteeing true
closed-loop asymptotic stability are 3A

(s[l+K(jco)G('jo)l>_[K_'jo)AG(jc0)] for 0 < co _<** (10)
and

cr[I+(K(jco)G(jco))'l]>_[E(j{o)] for 0 <_co< ** (ll)

where s = j{o and E(jo.})is the input multiplicadve error

E(jo}) = (K{jco)G(jco))'1(K(jco)AG(j{.o)) (12)

= G'l(jco)AG(jo}) if K(,jco)and G(jo}) are'nonsingular

Sequential Loop Closure
Sequential loop closure is defined here as the use of any

appropriate synthesis technique to design loops in stages to yield
the final multivariable control law. For example, classical
control techniques can be used to close scalar loops one at a
time, or of more interest here, modern multivariable control
techniques can be used in stages. However, care must be taken
because the selection and closure of a specific loop can both
adversely affect the stability and performance already designed
into previously closed loops, as well as influence the stability
and performance in subsequent loops yet to be closed. Thus,
the key to success is the selection and order of the loop closure
and this is typically based upon a fundamental understanding of
the plant dynamics. Specific examples of this approach can be
found in Refs. 5 and 9. One situation where sequential loop
closure is particularly effective is where frequency separation
exists between each sets of loops. In this particular, but
common situation, most modern muhivariable synthesis
methods would lead to undesirable results if used to close all
loops simultaneously. This is due to the fact that the loop
transfers are forced to be closely spaced at crossover, which
yields strong coupling and destroys any frequency separation
naturally present.
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The analysls to follow is developed for the two-step loop
closure depicted in Figures 2 and 3; however, the approach can
be generalized to multi-step loop closure settings The direct
application of Nyquist stability and stability robustness theory to
the complete feedback loop in Figures 2 and 3 offcrs ver5 little
mforma_ion about the stabihty and stabilily robustnes_ at each

loop closure step which is of paramounl importance dtn-mg the
synthests. To obtain this information. Nyquist theory mavbe
applied at each step in the loop closure process.

But first, it will be shown that the block diagram
structures in Figures 2 and 3 are special cases of the structure in
Figure I. Consider the following partition of the system in
F_gure I, or

Y(S) =[YI(S!]LY2(S; J yc(s) = yc-,(s), ' u(s) =[ u2(s) [, (13)

K(s)=. _ Kll(S) KI2(S)
[ K21(s) K22(s) G21(s) G22(s)

_G(s)=[AGtl(s)AG12 (s)]LAG21(s) gG22(s)

The block diagram structure in Figure 2 is obtained by selecting

K21(s) = 0 K22(s) = 0 (14)

O 12(s) = AG 12(s) = 0 O22(s) = zXG22(s) = 0

leading to

[G_(s)]
K(s) = [Ki(s) Ko(s)] G(s) = [Go(s)j (15)

AG(s) =[ AGi(s) ]
LaGo(s)

The block diagram sm_ctur¢ in Figure 3 is obtained by selecting

Kl2(s) = 0 K21(s) = 0 (16)

leading to

[Ki(s) 0 ] [ Ol(s) G,o(S) ?
K(s)

[ 0 Ko(s)] G(s)==' [ Gods) Go{s) J (17)

AG(s) =F AG,(s)aG,o(s)]

LaGoi(S)aGo(s) j

Slabilily AI Each Loop Closure

Let PK and PG denote the number of poles of K(s) and
G(s), respectively, in the right-half plane, or

P = PK + PC, (18}

PK cttn 1",eseparated into the nunlber of cornpens:ttor poles in the

right-half plane m Ill,: tnner loop compensation, PK( and in tile

where N_(O.del [1 * KIs}G_{s}],CRH P} denotes the number of
encirclements of the origin by the inner loop Nyquist du_gran,,
Zi is the number of do_cd-loo'p pole.,, of the inner ioop system in

the righl-half plane, and Pi is the number of open-loop poles of

the inner loop system in the right-half plane. Although clo_,ed-

loop stability of the complete feedback system is uhimately
desired, requiring Z i = 0 at this loop closure step is not

necessary because the unstable poles represented by Z i are to be
stabilized by the outer loop. Using the notation in Eqs. (t8) thru

(20), Z i and Pi are given as

Zi = PGI} Pi = PKi + PG {22)

and the encirclement re{luirement in Eq. (21) become.,,

Ni = - PK i - Poi (23)

Next, applying Nyquist theory to the outer loop closure
yields

No(0,det[l + K(s)Go(s)],CRHP) = 7-o- Po (2,:1)

where No(0,det [I + K(s)Go(s)],CRH p) denotes the number of
encirclements of the origin made by the outer loop Nyquist

diagram, 7_.0 is the number of closed-loop poles of the outer loop
system in the right-half plane, and Po is the number of open-

loop poles of the omer loop system in the right-half plane. Since
this is the last loop closure, the requirement

7-.o=0 _ No=-Po (25)

is necessary for asymptotic stability of the complete system.
Using the notation in Eqs. (18) thru (20), P0 is given as

Po = PKo + PG'o (26)

and the encirclemem requirement in Eq. (25) becomes

No = - PKo- Poo (27)

tn summary, for closed-loop asymptotic stability of the complete

feedback system, the inner and outer loop Nyquist diagr:mls
must have the correct number of encirclemenls of the origin,

namely -PKdPcq and -PKo-PG' o, respectively.

To understand how the inner and outer loop encirclernem
requirements relate to the encirclement requirement for the

complete feedback loop in Figure 1, consider det[l + K(s)G(s)l
and the partitioning in Eq. (13), or

dctII÷KGI=de_I+KilGII+K 2G2t KIIGI2+K 2G22 !
C K21GIl",-K22G21 I+K2IGI2+K22G22J (2g)

Using the identity for the determinate of a partitioned matrix In

yields

outer loop compensation. PKo. or
detll+KG] = detII+KI1GII+KI2G21]detII+K21GI2+K22G22-

PK = PK," PKn (19) (K21GIl+K22G21)(I+KI1GIl+KI2G2I)l(KllGI2+KI2G22)I -

(29}
Further, PG can be separaled into the number of plant poles in

the right-half plane to be stabilized with the inner loop, PG,, and For tile block diagram sm_cture in Figure _,'_Eq. (29) red,ces In

v.,ith the outer loop, PGo, or

PG = PG_ + PG'o (2(}}

Applying Nyquist theory to the inner loop closure yields

Ni(0,det[I + K(s)Gi(s)],CRI-IP) = Zi - P_ (21)

2

dctll + KGl=dctll -K,G,Idetll*KoGo(l+KiG,) "1] (3{}}

From Figure 2, the effective transfer function between Yo and uo

with the inner loop dosed is

Go = Go(I + KiGi) l (31)

= =
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"thus, the result in Eq. (30) becomes

det[] + KG] : det[[ + KiGi]det[[ + KoGo] (32)

Rut from tile block diagram in Figure 3, Eq. (29) reduces to

detl I+KGI = detll÷KtGildetll+Ko{Go-Goi(I+K,G0lK,Gto}l

(33)

From Figure 3, the effective transfer function between Yo and uo

v.,nh the inner loop closed is

G'{}= Go " Got(I + KiGi)'lK_Gio (34)

Thus. Eq. _33) also bccomes identical to Eq. {32).
The result in ELl. (32) is the key to relating the

encirclement rcquiremerlt ;it each step to the encirclernent
rcquircmcnt for the complete fcedback system. Using the

contorm:fl mapping identity for the product of two functions, g

Eq, (32} yields
N = Ni + No (35)

Thus. the number of encirclements of the origin by the Nyquist
diagr:wn for the complete feedback loop equals the sum of tile
number of encirclements for the inner and outer loop systems.
Each loop closure contributes to the "unwrapping" of the origin.
Further, by substituting Eqs. (23) and (27) into Eq. (35). it can
hc seen that closed-loop :tsymptotic stability as indicated by Eq.

(3) is implied if the individual encirclement requirements for the
inner and outer loop systems are achieved.

Just as in the case of single-loop closures, Eq. (32} can
also be used to relate tile Nyquist diagram at each "multivari:tble"
_,tcp to the Nyquist diagram for the complete feedback system.
Any point on a Nytlui.st diagram is a complex number with
magnitude and phase. Thus, if one defines

det[l + K(jco)G(jc0)] = MeJ 0 (36)

det[l+Ki(j0_)Gi(joJ)] = Miej0i det[I+Ko(jo3)Go(jo)] = Moe j0o

the magnitude and phase contributions from the inner and outer
loop Nyquist diagrams to the complete Nyquist diagram are

M=MiM. , O =0i+0o (37)

One common situation where matters are simplified is

when frequency separation exists between the inner and outer
loops. Suppose the inner loop crossover frequencies are in a
higher frequency range and the outer loop crossovers all lie in a
lower frequency range. Further, suppose the inner and outer
Ioop shapes are as shown in Figure 5 where both loops are well
attenuated above their respective crossover and the inner loop

system is either type 1,0, or -t. I1

"-,.

• .. type 1
-.

".. l[KiGili}l

type 0

lower frequency range

type -1 ."""'"'"

higher frcqucncy range

Figure 5. Inner And Outer System Loop Shapes

For frequencies well above the outer loop crossover

I1Ko(jco)Go{jco)l,jl ,, 1 (38)

and Eq. (32) becomes

dell[ + KGI = det[I + KtG,] {39)

indicating |he Nyquist diagrams for the complete feedback
svstem and the inner loop system are approximately identical
()n the other hand, for frequencies v, ell belov., the inncr !pop

crossover

I K(o))G(i(,,}) )I i 1= r'-{K_G'Hf})h.II
j(o

!lK,{j{,})C;,(jo))I,jI = II Kt(0}Gt(0}IUI

I[ Kt{jo)}G,(joJ)Iul =,,l jco [KG,(0)]i}I

where KG,{jo}) is the remainder left over after l/j(.o or jco is

factored from K_(j{,}}G,fj{o} and Eq. {32} becomes

for type I K,G,

for type 0 K,G_ (..10)

for type -i KtG,

det[l ÷ K{jo})Gfj{o)I = {let[ .l K-CS',(OHdetII + Ko{j{o)G'o(j_)l
J(,}

for type i K,Gi
(41)

det[[+K(jto)Gfj_)l = det[i+K,(0)Gi(0)]det[I+Ko(j_)G'o(jO})]

for type (} KiOi

det[l + K(jo})G(j{.o)] = detll ÷ Ko{jto)G'{}{j(,})l

lor type -1 K)Oi

indicating the Nyquist diagrams for the complete feedback

system and the outer loop system are approximately identical for
type - 1 KtG i, different by only a constant scale factor for type 0

K,G i, and different by a frequency dependent scale factor for

type 1 KiG i.

Stability Robustness At Each Loop Closure

Let PGT denote the number of poles of GT(S) in the

right-half plane, or
PT = PK + PGT (42)

PGT can be separated into the number of tree plant poles in the

right-half plane to be stabilized with the inner loop, PGi T, and

with the outer loop, PG_:rr, or

PGT = PGtT + PGoT (43)

yields
Applying Nyquist theory after the true inner loop closure

NiT(0,det[[ + K(s)G,T(S)I,CRHP) = ZiT " PiT (44)

where NiT(0,det [I + K(s)GiT(S)],CRH P) denotes the number of

encirclements of the origin by the true inner loop Nyquist

diagram, ZiT is the number of true closed-loop poles of the inner

loop system in the right-half plane, and PiT is the number of true

open-loop poles of the inner loop system in the right-half plane.

Again. requiring Ziy = 0 at this loop closure step is not

necessary. Using the notation in Eqs. (t9), {42). and (43}, Z,T

and P_T are given as

ZiT = PGoT , PiT = PKi + PGT (45)
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and the encirclement requirement in Eq÷ (,,4-4)becomes

NiT = - PK, - PoI T (46)
If

l The nominal inner closed.loop system satisfies the

encirclement requirement N, = - PKi - PGi (see Eq. (23)),
and

2. The required number of encirclements of the origin is the
same for both nominal and true inner closed-loop systems

or PGI = PG2T (see Eqs. (23) and (46)),

then the modeling errors AGi(s) are guaranteed not to chan_e lh¢
nulTll2er of unstable poles when only the inner loop is closed if

det[I + Ki(s)Oi(s,e)]ls _ CRHP, 0 < _:< I _ 0

Two sufficient conditions, developed from Eq.
guaranteeing the above are

_[1 + Ki(jm)Gi(j_)] > c[Ki(jco)AGi(jco)] for 0 < ¢0<**

and

._[I + (Ki(joa)Gi0m)) "l] > _[Ei(jm)] for 0 -< to < **

(47)

(47),

(48)

(49)

where Ei(j¢o) is the inner loop input muhiplicative error

Ei(jm) = (Ki0co)Gi(jo)))'l(Ki(jm)AGi(j_o)) (50)

= Gil(jm)AGi(jco) if Ki(joa) and Gi(jm) are nonsingular

The validity and importance of considering stability robustness

with only the inner loop closed may be unclear at this point, but
it wilt be shown that the requirement in Eq. (47) is an integral
part of the stability robusmess requirement for the complete
feedback loop.

Next, applying Nyquist theory to the true system, after
the ouler loop closure yields

Nc_(0,det[l ÷ Ko(s)GoT(s)],CRHP) = 7_<,T - Po T (5t)

where NoT(0.det [I - Ko(s)GhT(S)],CR_.lp)denotes the numbcr

of encirclernents of the origin bv the true system's outer loop

Nyquist diagram, Z(r r is the number of closed-loop poles it" the

rrght-half plane after the outer loop closure, and POT is the

number of open-loop poles in the right-half plane of the true

system before the outer loop closure. For the block diagram

structure in Figure 2, G_,T(S)is defined as

G_r = G°T(I + KiG'T )'t (52)

which accounts for modeling errors m both Gi(s) and Go(s),

while for the block diagram structure m Figure 3, GoT(S) is
defined as

G_ = Go T - GO,T(I - KiGIT )'1KtOioT (53)

which accounts for modeling errors in Gi(s), Gin(s), Goi(S), and
Go(s). Again, the requirement

Zo-r = 0 = No r = - POT (54)

is necessary for true asymptotic stability of the complete

feedback system. Using the notation in Eqs. (19), (42) and

(43), P"_r is given as

POT = PKo + PG_I. (55)

and the encirclement requirement in Eq. (54) becomes

1514
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NOr = - PK o - PG_i. (56)

If

1. The nonfinal outer closed-loop system is asymptoi,cally

stable or N O = -PKo - PGo (see Eq (27)), and

2. The required number of encirclements of the origin is the
same for both nominal and true outer closed-loop systems

or PG'° = PG_,T (see Eqs. (27) and (56)),

then true closed-loop asymptotic stability is guaranteed if

det[t + Ko(s)G'o(S,E:)]ls e CRHp, 0 <-.e-< 1 :_ 0 (57)

where for the block diagram structure in Figure 2, Go(s,c) is
defined as

G'o(S,t) = Go(s,t)(I + Ki(s)Gi(s,e)) t (58)

while for the block diagram structure in Figure 3, Go(s,E:) is
defined as

O'o(S,C) = Go(s,_:) - Goi(S,e.)(l + Ki(s)Gi(s,'c))'lKi(s)G,o(S,E)

(59)

Two sufficient conditions guaranteeing Eq. (577 are

g[I + Ko(j_)Go(j0_,c)] > _[Ko(j_)AGo(jOa,E)] (60)

for 0 _<¢0 _<_, and 0_<E_<I

and

_[I + (Ko0ea)G'o(j_,c:)) "1] > o[Ed.joa,e)] (61)

for0<_<_,_ and 0<e<l

where for the block diagram structure in Figure 2, the effective

outer loop plant and additive error Go(s,_:) and AGo(s,E),

respectively, are defined as

G'o(S,_) = Go(s)(l + Ki(s)Gi(s,E)) "1 (62)

AGo(s,_) = _SGo(s)(I + Ki(s)Gi(s,c)) "t

while for the block diagram structure in Figure 3, Go(s,E:) and

&Go(s,r_) are defined as

_' Ki(s)Gi(s,_:)) "i K,(s)Gm(s,QGo(s.£) = Go(S) - Goi(s,_:)(l +

k_o'o(s,E:) = AG a(s) - Go,(s,£)(l - Ki(s)Gi(s,_:))'t Ki(s)G,o(s,C)

(63)

and where E-'o(j0._,e) is the effective outer loop input

muhiplicative error

Et)'Jto,e) = (Ko(joJ)go(J_,_))"(Ko(jm)gGo(J_,E)) (64)

= G'o "1(jco,E)AG'o(jC0,C) if Ko(jCo) and Go(jCo,e) are nonsingtflar

Ahhough conceptually the same as the standard singular value
robustness tests, Eqs. (60) and (61) are more complicated
because of the modeling errors present in more than one location

in the feedback system. Unfortunately, the dependence upon

can not be eliminated m a simple manner.
To understand how the inner and outer loop Nyquist

diagram warpmgs relate to the warping of the corn plete feedback

loop in Figure 1, consider det[l -,- K(s)G(s,e)] and the

partitioning in Eq. (13). Similar to the development in Eqs. (28)

thru (34), det[I + K(s)G(s,e)] can be expressed as

dctl l+K(s)G(s,e)l = detrl+Ki(s)Gi(s,_:)]det[l+Ko(s)G'o(S,e)]

(65)

i
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i

i



The resuh in Eq. (65) is the key to relating the warping of the
Nyquist diagram at each step to the warping for the complete
feedback system. The complete nominal feedback system is
robust against modeling errors as indicated by Eq. (8) if the

warpings for the inner and outer loops satisfy Eqs. (47) and
(57), respectively. Note that although achieving the individual
singular value robustness requirements in Eqs. (48) and (60) or
(49) and (61) implies the requirement in Eq. (8), it does not
necessarily imply that the the requirements in Eqs. (10) and
(11). respectively, are satisfied.

Eq. (657 c:m also be used to relate the Nyquist diagram
warping at each step to the warping for the complete feedback
loop. The magnitude and phase of ;_ point on the Nyquist
diagram warping for the complete feedback loop is _iven bv the

the corresponding points on the inner and outer loop Nyquist
diagram warpings simil,'u" to the idea given in Eq. (37).

For the important special case involving sufficient
frequency separation between the inner and outer loops, suppose
that the loop shapes shown in Figure 5 are not significantly
ahered by the inclusion of the modeling errors. In other words,
for frettuencies well above the outer loop crossover

ilKo(j_)Go(jc0,e)lijl ,, I (66)

and Eq. (65) becomes

det[I + K(s)G(s,E)] - det[I + Kl(s)Gi(s,_')l (67)

indicating the warping of the Nyquist diagram for the complete
feedback system and the inner loop system are approximately
identical. On the other hand. for frequencies well below the
inner loop crossover

IIK,fjco)G,(j(o,E)hjl= t J-[_I((},E){U{
J(,)

I(K,(jco)G,(j0_,E)Iul = t[K,(0)Gt(0,tz)h.,{

I[Ki(j_)Gi(jco,E)]ijl _, I jco [KG,(O,_)Iijl

where KGi(jco,E) is the remainder left over after l/j(o or jco is

factored from Ki(jo3)Gi(jco,e) and Eq. (65) becomes

for type 1 KtGi

for type 0 KiGi (68)

for type -1 K,Gi

de,I l+Kf.jco>G(jc0.e)l -=dell 1 EG-,((),_)ldet[l+Ko(jo0)G'o(jc0._:)l

for type 1 KiGi
(69)

det(l+K (jco)G (jo_,e)]=det[I+Ki(O)Gi(O,e)]det[I+KoGco)G'o(j00,e)]

for type 0 KiGi

det[I + K(jco)G(jco,_')] ,- det[I + Ko(.jco)G'o(jCo,e)l

for type -1 KiGi

indicating the warping of the Nyquist diagram for the complete
feedback system and the outer loop system are approximately

identical for type - 1 KiG i, different by only an _ dependent scale

factor for type 0 K,G i, and different by a frequency and

dependent scale factor for type 1 KiG i.

Example

The example to be considered involves the longitudinal
flight control of a large, tlexible aircraft. Controlled inputs

consist of elevator deflection _ and canard deflection _5C while
responses of interest include the pitch rate measured at two

locations on the fuselage, ql and q2, and the surge velocity u.

The model for the aircraft dynamics is 12 th order and the state

space description is given in the Appendix. Frequency
responses for elevator deflection are shown in Figures 6 thru 8,
The open-loop eigenvalues consist of

e_
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Figure 6. ql(sYSE(s) Andqt(s)l_s ) Frequency Responses
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0,033 phugoid mode
-O.043 phugoid mode
-0.45=j1,2 shoo period mode

-0.44zj6.0 Ist aeroelastic mode

-0.22_+j 11,0 2nd aeroelastic mode

-0.36_j 11.0 3rd aeroelastic mode

-2.6--j 13.0 4 th aeroelastic mode

From Figures 6 thru g and the open-loop eigenvahte data,
observe the lo'a damping of the short period and aeroelastic
n')ode_,, the significant aeroelastic contributions IO the pitch rate
re',;ponse_,, and the ur)'..t_)ble phugoid mode.

The flight control design objectives are to increase the
damping of the short period and aeroelastic rhodes, reduce the

aeroelastic contributions to the pitch rate responses, and stabilize
the phugoid mode. With the existing frequency separation
between the phugoid mode and the other modes, the flight
control synthesis will be accomplished in a two-step approach as
indicated in Figure 2. The inner loop closure consists of angular

rates ql and q2 feed back to 8E and 80 respectively, while the

outer loop closure consists of speed u feed back to 8E,

The inner loop comper)sation was synthesized in Ref. 9

and is briefly reviewed here. First, the q2/_C loop is closed to

improve the lS aeroelastic mode damping. Next. a 8 E to 8 C
crossfeed is introduced to reduce Ist aeroelastic mode excitations

from 8 E. Finally, the ql/SE loop is closed to improve the short

period damping. Ref. 9 neglected the _ and higher aeroelastic
modes, thus a notch filter is introduced here at 11 rad/s to reduce

the significant 2rid aeroelastic mode contribution and a tow pass
filter with at bandwidth of 60 rad/s is introduced for attenuation

of higher frequency aeroelastic modes. Inclusion of the notch
and low pass fillers introduced approximately I5 deg of phase

lag at the lSaeroehtsticmode frequency. With this, the inner
loop compensator is

K)(s)= N-.---LS2*.47s+t161 "•05 0 ](rad )
s+60s2+%2_;+116t •(175 .{)5 J rad/s (70)

and the block di:tgram structure is sl+own in Figure 9, where 8

represerus the pilot stick inputs

.','o1"_,)_ ufs)

u,('_) = 81(_) _ <surge veh:..my)

: [%:_) 8ds)]
8(sl + .

_ [,t,(,)t
',' lSJ = +

,,_ ! d2 _ I c_'c+_)JJ l
t'o!T i t _ " I

81_s)= 81:(st+ 81_(s)

8(:(s) = _-(s)

Figure 9. Inner Loop RIc_-k Di_gTLm

Figures 6 thru 8 show the effect of the inner loop closure
on the frequency responses and the intermediate closed-loop
eigenvalues are

0.031 phugoid mode
-0.(}--,1+2 phugoid mode
-(1.69_+j 1.1 shoo period mode "

-0.75_+j6.1 1st aeroelastic mode

-0.22_+j I 1. 2 nd aeroetastic mode

-0,36_j I 1. 3 rd aeroelastic rhode

"2r6--.+j 13. -Ith aerocl'tstic mode
- 1.7__.11. compensator mode
-60, compen,_uor mode

Note the increased _,hort period and 1_', aeroelastic mode
damping its ,sell as the rnore rigid-bod', like pitch rate frequene\
responses. Also note the relat+vely unaffected phugoicl
characteristics.

The Nyquist diagram corresponding to det[l -,-

K_(s)Gi(s)] is shown in Figure 10 and note that N i = 0, Z t = 1,
and Pi = 1. Further, the intermediate singular ;'alue

"robusmess" CseeEq. (49)) is plotted in Figure 1 I.
0.8

._=

I i

61 : i

• / \ , Short Per pal'

o2!.................. ..... I

2
-o.6 -..+.'.m.9++KDhe._-__-..:--_',, ...............

: : Ist Aeroelastic I
-O.g M_c

2

0.5 1 1.5

real

Figure 1O. Inner Loop Nyquisl DiagrRm Using det[I + KiOi]

40

30
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i

,
IO2 IO.I I0o lOI l(}c

frctl (rad/s)

Figure 11 Inner L.oop Singular V:duc Robu_:mcs:s.

Charactcrisllc _'[1 + (K_G0"ll

No,,,,', the outer loop consists of constant gain feedback
of speed (u), or the outer loop compensator is

KoCs) = 0.0001 (f_s) (71)

and the block di:tgranl is shown in Figure 12. Figures 6 thru 8
show the effect of the outer loop closure on the frequency
responses :tnd the final closed-loop eigenvalues :.ire

-0.0067_.01027 phugoid mode
"0.69--+jlr 1 short period mode

-0.75_.+j6.1 Is_aCtlO_htstic nlode

-0.22Zj I 1, 2nd aeroclastic mode

-0.36_j I 1. 3rd aeroelastic mode

-2.6-+j 13. 4th aeroelastic mode

- 1.7"," 11. compensator mode
- 60. cornpensator mode

Note the stabilized phugoid mode and the relatively unaffected
higher frequency modes.
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I . yo(s)= u(s)

• (1

51:);) = bl3,';j " 51!(s,)

Figure 12 Inner And Outer I._x_p F;hx:k Diagram
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Figure 13. Oulcr [.t)op Nyquisl DiagTam Using dct[I + KoG(_]
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Figure 1.4. Outer h)op Singular Value Robusmcs,_

Characteristic (7-..[[+ (KoG'o)lJ

The Nyquist diagram corresponding to det[[ +

Ku(s)Gi)(s)l is shown in Figure [3 and it is seen that N O = -1,

Z o = (), and Po = 1. Further, the singular value robusmess (see

Eq. (61)) with £ = 0 for this scalar loop is plotted in Figure 14.

If the block diagram structt, re in Figure 12 is recast into

the t'onnat of Figure I, then the Nyquist diagram corresponding

to the complete feedback system or det[I + K(s)G(s)l is shown

in Figure 15. Note the aggregate of the inner and outer loop

Nyquist diagrams closely matches the complete Nyquist

,.li,tgram. It is insightful to see how each loop closure

contributes to the shape of the overall Nyquist diagram and the

required number of encirclemems of the origin. Further, the

singular value robustness (see Eq. (1 1)) is shown in Figure 16.
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....... det[I + KoGol

Figure 15. Nyquist Diagram Comparisons
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Note the contributions from the inner and outer loop to the 8.

complete feedback loop. Here, the match occurs because of

several special features in the loop shapes as shown in Figure

17. With the block diagram structure in Figure 2 or 12, the loop 9.

gain is given a_

KG = KiG_ + KoGo (72)

Further. for this example, KoG o and Kt-,G _ are approximately

equal as; indicated in Figure 17. Therefore, as seen from Figure

17, the higher frequency range match occurs because KoG o is

sufficiently attenuated relative to KiG p or

KG = KiGi (73)

Also, as seen from Figure 17, the lower frequency range match

occurs because KiG i is type -I (small KiG i relative to KoGo), or

KG = KoG'o (74)

Conclusions

h has been shown how the nominal, muhivariable

Nyquist diagram and it's continuous warping to the true shape

for the overall feedback system is related to the contributions

from the inner and outer loops. The encirclement requirement of

the overall feedback system to assure nominal asymptotic

stability is converted to the encirclement requirements for the"

inner and outer loops. Further, to assure robustness against

modeling errors, the requirement of avoiding the origin, when

the Nyquist diagram is warped from the nominal shape to the

true shape, is converted to similar requirements for the inner and

outer loops. The implications for analysis and design are that

the overall stability and robustness characteristics can be

decomposed into contributions from the inner and outer loops,

which can offer guidance in feedback design.
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Appendix
The aircraft model is

= Ax + Bu (75)

y=Cx
where

Y= q2 (rad/s) u =

u (ft./s) [ 8C (rad) J (76)
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New Plant And Controller Order Reduction

Results With Weighted Balancing

Abstract
Frequency weighted internally balanced (FWIB) truncation is
briefly reviewed. A previous frequency response error analysis
for FWIB truncation is extended and an exact error bound for

the special case of order reduction by one state is presented in
terms of the controllability-observability measure used in
selecting the coordinate to truncate, as well as two additional
frequency dependent variables. The two additional variables are

shown to be small when the controllabi[ity-observability
measure is small, justifying the reduction technique based only
upon consideration of the controllability-observability measures.
An approximate error bound for the genera[ case of order
redt,ction by more than one state, under the assumption that only
small controtlability-observability measures are truncated, is
presented. FWIB residualization is presented and a frequency
response error analysis yields resuhs similar to that found for
FWIB truncation. Numerical examples are given to support the

error analysis results, as wet[ as to stress that FWIB truncation
and residuatization can be used in a coordinated manner to

achieve higher accuracy than that achievable from either
technique t,sed alone.

Introduction

Models developed from the governing physical
principles are often of high dynamic order, 1," complicating the

direct use of the model in the intended application. For example,
control law synthesis is a common application for dynamic
models. However, many modern linear control synthesis
techniques produce a controller with dynamic order at least equal
to the plant dynamic order. 3A This is unacceptable for controller

implementation. Thus, order reduction of dynamic models is of
extreme importance.

Here it is assumed the system that is modeled will be
actively controlled in a feedback loop such as in Figure I, with
responses y(s), control inputs u(s), response commands yc(S),

plant transfer function matrix G(s), and compensator transfer
function matrix KCs). A reduced order model for the plant,
GR(s) (or for the compensator, KR(S)), should preserve the key
frequency domain characteristics of the higher order model, 5-7

and an order reduction technique specifically tailored for this
task is frequency weighted internally balanced (FWIB)
truncation.5

In this technique, coordinates reflecting small measures
of weighted controllability-observabilhy are truncated based

upon the engineering argument that this procedure will yield a
reduced order model that matches the frequency response of the
higher order model in the critical frequency range, as numerous
examples have demonstrated. 8,9 As of yet, however, there
exists no rigorous theoretical justification for this technique, that

guarantees a small error in the critical frequency range, similar to
the result discovered for unweighted internally balanced (IB)

truncation. 5.10 Enns 5 did consider a frequency response error
analysis of this technique, but his result was left so cumbersome

that its utility was limited. The first goal of this paper is to

Yc(S) + u(s) y(s)

Figure 1. Generic Feedback Loop
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extend the frequency response error analysis of Reference 5 /or
FWIB truncation, so as to develop a theoretical justification for
this weighted technique.

Recall from classical truncation and residualization

theory, that truncation is most appropriate for eliminating lower
frequency dynamics, while residualization is most appropriate
for eliminating higher frequency dynamics, relative to the

frequency range of interest. 8 Reference l 1 recently considered
this point and showed that all the properties existing for IB
truncation also exist for IB residualization, including an upper
bound on the frequency response error identical to that for IB

truncation. In light of these results, a second goal of &is paper
is to establish FWIB residualization as an acceptable order
reduction technique, to be used in conjunction with FW[B
truncation,

Truncation And Residualizatlon With FWIB States
Consider a finite dimensional, linear, time invariant state

space model representing the higher order plant in Figure 1, or

x(t) = Ax(t) + Bu(t) (I)
y(t) = Cx(t) +Du(t)

Also consider an input weighting filter

(2)_wi(t) = Awixwi(t) + Bwih(t)

u(t) = Cwixwl(t) + Dwtr(t)

and an output weighting filter

(3):_wo(t) = Awoxwo(t) + Bwoy(t)

y(t) = Cwoxwo(t) + DwoY(t)

cascaded with the higher order model in Eq. (1), as shown in
Figure 2, where Gwi(S) and Gwo(S) are the corresponding

weighting transfer function matrices, respectively. The input
weighting filter is used to adjust the frequency response such

that 800) to y(jo)is approximately the same as u(j_) to y(jco) in

the frequency range of interest, and is well attenuated outside the
frequency range of interest, while the output weighting filter is

used to adjust the frequency response such that u(jco) to'_(jo) is

approximately the same as u(jco) to y(jco) in the frequency range

of interest, and is well attenuated outside the frequency range of
interest.

Figure 2. Frequency Weighted Model

The weighted controllability grammian X and the
weighted observability grammian Y for the higher order model
in EQ. (I) are defined asi6

X=[ xllx2' x22X'2J -- 2-'_f_ X'(Ja))X'*(Jco)d_

X(jO) = (jcol - AX)-1B x

V(j,..o) = Cy(j¢oI- Ay) "I

BCwi I rBDwil
A,_ J BX=[ BwiJ

(4)with

y =[ YII
Y21

with

Ax=[ AO
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_[ A 0 !
Av-_i BwoC A,_j Cy=[ D_oC C,_]

Further, if A. A,,,,i, and Awo are asymptotically stable, then X
and Y are the unique, positive semidefinite solutions to

AxX+XAx+BxBx--0
AyY + YAy + C_(Cy = 0

(5)

FWIB states i, which decompose the system such that
weighted controllability and observability are balanced, are

related to the state vector x in Eq. (1) by the transformation 5

x(t) = T_(t) (6)

where T is given as

T = VW (7)

with V decomposing XI1YII, Xll, and YI1 as

XltYII =VX2V "1 Xlt =V_V T Yll = v'IT_v "l

Z=)-cYo Y=diag{oi} ai>0

Ec=diag{oc i} aci>0 _=diag{oo i} Ooi>0

(8)

(note that the oi's, OcfS, and Ooi'S are all real numbers) and W
defined as

I°cil It2 if oci,0 and ,0
_Ooi / °°i

W = diag{w i }

wi=[ _ I ifoci=0 or Ooi=O
t (9)

Further, the partitions XII and YI1 of the weighted

controllability and observabiliry grammians are transformed such
that they are equal and diagonal, or

,Xll = ?l_ =X (10)

A key result from References 5 and 10 concerning order

reduction is that the oi's are measures of the controllability-

observability of the corresponding coordinates in _. for the

weighted system. Therefore, states with larger values of o i
contribute more, in effect, to the weighted frequency responses.
(This is the claim that has not been rigorously justified with a
frequency response error analysis.)

Now assume the higher order model in Eq. (1) is FWIB
and suppose the higher order and reduced order models have

dynamic order n and n R, respectively. Further, suppose the oi's

are ordered from smallest to largest. Partitioning of X I IY 11 as
follows,

XllYll=Y.2 [_ O]

=Lo (11>
El =diag{ai} i= I ..... n-n R

)-2 =diag[oi} i=n-n R+I ..... n

0-<Ol <'-.<On

leads to a partitioning of Eq. (1), or

y(,) x,(t)]+Du(t>x2(t)

(12)

where states x I are less controllabie-obse_'able and states x2 are
more controllable-observable in the weighted, balanced system.

Truncation of the states x I leads to the reduced model 5

x2(t) = Az2x2(t) + B2u(t) (I 3)

y(t) = C2x2(t ) + DuO)

Suppose the oi's in Eq. (8) are now ordered from largest
to smallest. Partitioning Of XllYll as follows,

,v_2= 0
XI1YI] = Z

Y_I = diag{oi} i = 1..... n R

Z2=diag{oi} i=n R+I ..... n

Ol>_...>On_0

(14)

leads to a partitioning as in Eq. (12), where states x 1 are more

controllable-observable and states x 2 are less controllable-
observable in the weighted, balanced system. Residualization of

the states x 2 (provided A22 is nonsingular) leads to the reduced
model 12

)_l(t) = (All - AI2A_12A21)xI(t) + (BI - AI2A_2B2)u(t) (15)

y(t) = (C1 - C2A_/A21)xl(t) + (D- C2A_)_B2)u(t)

FWIB Truncation Error Analysis
Let the transfer function error from order reduction be

defined as

E(s) = G(s) - GR(S) (16)

The magnitude of the individual elements of E(jco)in the

freattencv range of interest are an important measure of the

accuracy of the reduced order model.5, 6 A closely related
measure is the individual elements of the weighted frequency
response error defined as

Ew(jco) = Gwo(jco)E(jco)G_i(jco) (17)

Note that if Gwi(jc0) and Gwo(J(0) leave the frequency response

tm:,ffected in the frequency range of interest and provide high

attenuation otherwise, then E_,.(jc0) and E(jc0) are essentially the

same in the frequency range of interest, and E_(jco) is small

otherwise. Finally, the maximum singular value of Ew(jCo),

denmed as _[Ew(jco)l, is an upper bound on the magnitude of

the elements of Ew(jc0). 7

It can be shown that the weighted truncation error can be

expressed as 5.12

E,,.(jco) = _,_(j_0)a1 (jco)_wCjco) (I 8)

where

gw0co) = §(jco)G,_i(jco) CZw(jco) = Gwo(jo_)C0co) (19)

B(jo_) = BI + Al2O(.jco)B2 [200) = CI + C20(jco)A21

O(.jco) = (jcol - A22) "l A0co ) = jo_I - A 1t - A 120(jco)A21

Further, the maximum singular value of the weighted error can
be expressed as

21E,,.] = _ 1,51Bwg_A "1"_2_2w] (20)

where _. denotes the maximum eigenvalue. By expanding the

products gw(ico)g_,(jco)and C_,,(jco)C_,(.jco) and using the

transformed, partitioned Eq. (5), it can be shown thatS, 12
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B_B_ = A{Z1 + (XI2)I(-jcol - A_O'lC_iff'}

{E[ + BCwi(joJI - Awi)'l(X21)l }A"

_:,_ = a'lz_ + (YuhG(ol - Awo)'l 8,_o_:1

{Z! + C'B_o(-jco[ - A_o)'I(Y21)I }A

where (X21)l and (YI2)! are partitions of X21 and YI2,
respectively, induced by Eq. (12), or

[ (YI2)I ]X21=[(X21)t (X21)2] YI2= (Y12)2 (22)

After substituting Eq. (21) into Eq. (20), O[Ew(jco) I can be

rewritten as 5.12

0 2[Ew] = k ((El + M" + A'I(EI + M)A*} (23)

{El + N + A'I"(TI + N')A}I
where

M(j(o) = B(j(o)C,,,,i(j(ol - Awi)'l(x21)l (24)

N@a)) = (YI2) I(jco[ - Awo)lBwoC(jr.t))

(2t)

Note that the terms M(jco) and N(jco) are functions of the
frequency weightings.

For n - n R : 1, then Yl = (3"1, A(jco) = _5(jco), M(j(O) =

m(jco), and N(jco) = n(jco) al! become scalars, and Eq. (23)

yields 12

o2[Ew]={l+bIb'al{l+c'lc'a'l(o'!+m')(ol+n) (25)

where

I •

aGco)= 8" (jco)8Gco) (26)
b0co) = _! + m'(,jco) coco) = o! + n0(o)

provided o I ¢ - m*(jco) and o I _:- n(.jco) for all frequencies.

(Note that Ol is a real number, while m(jco) and n(jco) are

complex numbers, making it unlikely that o I =. m°(jco) and o!

= - n(jco).) Since the right-hand side of Eq. (25) represents a

positive semidefinite matrix (Ew(jco)E._(jco)), taking the absolute

value does not alter the equality, or

o2[Ew] =ll + b-lb'al • I1 + c'lc°a°l • IOl +ml -IOl +hi (27)

< {1 + Ib'lb*l • lal}{ 1 + Ic'lc*l. lal} IO'l +ml. lal +nl

Substitution of the equalities la(jco)l = 1, Ib'l(.jco)b'(j(o)l = 1, and

lc'l(jco)c'(jco)l = 1 into Eq. (27) yields the error bound for order

reduction by one state 12

o[Ew(jc0)l < 2 { lot + m(.jc0)l • l_rI + n(jco)l }1/2 (28)

Observe that the structure of this error bound is quite similar to

that for IB truncation 5 and clearly reduces to the IB result when

the weighting filters are selected to be unity (i.e., m(jco) = n(,jco)
= 0).

Ana!y_i_ Of m(ico) And n(ico]

Recall that FWIB truncation is based upon the

engineering premise that states corresponding to small oi's
contribute little to the frequency response in the frequency range
of interest, and thus can be eliminated. Does the result in Eq.

(28) imply that one should eliminate the state corresponding to

the smallest value for Io i + m(j(o)l • 1(3"i + n(jco)l ? Numerous

examples,8, 9 demonstrating that FWIB truncation yields an
accurate reduced order model in the frequency range of interest.
suggest that the current procedure of considering only the
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relative sizes of the _i's is sufficient in the sense that. states

corresponding to smaller values of o"i also correspond to the

smaller values for Io"i + m(jco)l • 1o"i + n(j(o)l, and this is to be
shown next.

with

X(j(o) and x-f(jto) from Eq. (4) can be partitioned as

[- tx-Gco)= XGG(O_,,(jo_)
X,_,(j(o)

?Gco):[G_oLico)TGGco)¥_oLiCo)]

(29)

X--G(joJ): (jcoI- A)'IB ?G@O) : C(jcol-A) I (30)

X-'_(jco): (jcol - Aw,)'lBwi ?wo(J(o): Cwo(J(ol"Awo) "]

Observe that the ij th element of XG(j(O) is the frequency response

of the iiB state xi from a unit impulse in the j_ input uj and the

ij th element of CfG(jco) is the frequency response of the i_ output

Yi from a unit initial condition in the jib. state xj. Also, the ijth

element of,_wt(j(o) is the frequency response of the ith state ×wi i

from a unit impulse in the jth input 5j and the ijLI1 element of

Y'wo(jco) is the frequency response of the ith output Yi from a unit

initial condition in the j_ state x,,voj. Further, partition

.XG(jco), YG(jO_), Y(wtGCO),and Ywo(Jco) as

2"G,Gco)I [ 2,,,,,(jco)
X'G(J(O)= i ,2,,,,Gco)= '

L_G.(jco)j Xwip(,j(o)

?G(jco)=[?Gt(jco) .-- Vo.(jco)]

%oOco): [%o_(i_) ... 7_(j_o) ]

(31)

where p and q are the dynamic orders of Gwi(Jco) and Gwo(J(o),
respectively,

Using the notation in Eq. (29) and the transformed Eq.
(4),

E--2J-_-=flX'G(j(o)Owi(jco)Gwi(jo)X'*G(jco)dco
(32)

= YG(jco)Gwo(jf.t))Gwo(j o) YG(jco)dco

x2,= _fl _.iOco)G:i(jco)_'G(j(o)dco

YI2 = --_'_[** %(jco)O:,o(j(o)V, o(jco co
--/.

Finally, from Eq. (32) and using the notation in Eq. (31),

<:ri= 2-_nfl I,X'G,(.JCO)G,,,,,(jc-o)II_do_

= 2--If i llG_(jco)YG,(j(o)ll_dco

(33)



<..L(** i_wi (,jto)ft2 IIX-'-Gj(jco)Gwl(j_)ft2dco
I(X2l)tiJ I - 2rtJ. ** ' (34)

_(Y12)1ul-<2-1_-_f_. "G'c°Gc°)VG'(jc°)112tfV''°i(j°_)il2de° (35)

First, observe from Eq. (33) that for the smaller values

of o i, one can expect the II,XGj(j_)Gwi(jco)II2's and

JlGwo(jco)_/Gi(joOl[2's in Eqs. (34) and (35) to be small, since the

integrand in Eq. (33) is always nonnegative.

Second, consider the special but common case of IB low
pass and high pass weighting filters with 40 db/dec attenuation

as shown in Figure 3. In this case, the II,Xwii(J_)ll2's and

IIYwoj(J_)ll2's in Eqs. (34) and (35) have maximum value near

unity, depending upon the filter bandwidth, k. To show this, let

A w, B w (a 2xl matrix), Cw (a lx2 matrix), and D w be the state
space description of gw(S), and then

X-wi(j_)=X'w(j(o)oI with X'w(,jco)=(j60l-Aw)'lBw (36)

Vwof,jm) = Vw(jco). I with Yw(jCo)= Cw(jcol-Aw) 4

where for the low pass filter

--Xw(j_0)= _:_(0"59/X1/2) [ (j_/X) + 2'4 ]
{'a_'" - "'2 (Jcat_)"0.41 (37)

[ 1"{(i_X)+l} 2 -{(jco:z.)-o.41}

while for the high pass filter

_.w(j_) = (1/'All2) [ 1.4 {(jco/X) + 0.41 }]
{Oto/X) + 1} 2 0.25[(j_o/X) - 2.4}

[ -1.4 1r
{(j_-_+-l}2 k 0.25 [(jm_)- 2.4} J

(38)

Obse_rve from Eqs. (37) and (38) that the elements of ,Xv,,(jco)

and Yw(.jto), in a frequency response sense, consist of two real

poles with equal time constants, a real zero with nearly the same

time constant, and a Bode gain inversely proDortional to k w2.

Therefore, in this special case, the llXwi;(j_)ll2's and

II'Ywofljco)ll2's in Eqs. (34) and (35) have maximum value near

unity, depending upon the filter bandwidth, X. Note that low

pass and high pass weighting filters with attenuation rates other
than 40 db/dec indicate similar results.

Gwi(jto) or Gwo(jc0) = gw(jCo). I

where g,..v(jCo)is a scalar
2

. Igw(jco)l gw(s) =
Low Pass : _ (s + ),. )z

v

0 db/dec

2
: Ig,,,(jco)l g,_(s) = _.2.High Pass

l / 40 db/dec

Figure 3. Low Pass And High PassWeighting Filters

The reason for this result is explained by noting firs_ thai

¥,,,,(jto)

gw(jOJ) = Cw(jO_I - Aw)lBw + Dw

Xw(jO_) (39)

Now, since the state space description of g.,,,,(s) is IB, the

elements of B w and C w have equal magnitude or (Bw) i = __.(Cw)i

(i.e., the situation where either B w or C w is large and the other is

small is excluded). 13 Further, since gw(jt.o) provides unity

magnitude in the weighted frequency range and high attenuation

otherwise, then from Eq. (39) either of the following three
situations can occur:

1. large Cw and B w and small (joI - Aw) "1

2. intermediate C w, B w, and (.jcol - Aw) "1

3. small C w and B w and large (jtol - Aw) "1

depending upon the magnitude of A w, or the filter bandwidth X.

Therefore, the II,Xwii(Jco)ll2's and I1Ywoi(.j_)ll 2 s in Eqs. (34) and

(35) are constrained to have maximum value near unity,

depending upon the filter bandwidth _.
Although strictly a conjecture, it is felt that, using this

same explanation, the IlXwi.(jco)ll2's and II'Ywo..(jto)ll2's in Eqs,
I ,I

(34) and (35) will be constrained to have maximum value near

unity, depending upon the filter bandwidth, for any general
weighting filter that provides near unity magnitude in the
weighted frequency range and high attenuation otherwise.

Based upon the above observations, small o'i's imply

small (X21) 1 and (YI2)I from Eqs. (34) and (35), and hence

small M@.o) and N0w.o) from Eq. (24), at least for the special but

common case of low pass or high pass weighting filters.

Therefore, if a slate corresponding to a small t_i is truncated,

then one is also inherently eliminating a state corresponding to a

small Io i + m(jm)t • Io i + nOto)l, and the weighted frequency

response error will be bounded according to Eq. (28).

A00roximate Bound For The G¢ncral CPS¢
Unfortunately, the error bound for order reduction by

one stale can not be applied successively to obtain an error
bound for the general case of order reduction by more than one
state. This is because the reduced order model from truncation
is not FWIB. This is seen from the transformed, partitioned Eq.
(5), or

AXRXR + XRAx R + BXRBXR = RX (40)

AyRY R + YRAYR + CYRCYR = Ry
where

AXR:[,,..2B2C ,]BX,:[B2Ow'0 A_d Bwi ] (41)

A22 0 ]AYR = B,,,oC2 Awo CYR = [ DwoC2 Cwo ]

XR = YR =
(X21)2 X22 (Y21)2 Y22

Ry = 0 -A]2(YI2)1
-(X21)IA21 -(Y2I)IAI2 0

For the reduced order model to be FWIB, the residual terms R x
and Ry would have to equal zero, and they are clearly not zero,

in general.
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Here, one could rebalance the reduced order model and

continue by eliminating one state at a time with rebalancing until
the desired reduced order model is obtained; however, a

different approach is considered here. Based upon the previous
development in Eqs. (29) thru (39), note the residual terms R×

and Ry will be small if a truly small o"i is eliminated. In this

case, the model resuhing from order reduction by one state is
nearly F'WI B.

Denote mi(jw) and ni(jw) as the variables corresponding

to m(jw) and n(jw), respectively, in Eq. (24) for successive

order reductions by one state without rebalancing. Also denote

E_i(Jw) as the weighted frequency response error for each

successive order reduction by one state, or

o[EWl(JW)] _ 2 { lO'l + ml(jW)l * IOl + nl(jw)l }iT2 (42)

_{Ewi(Jw)] _ 2 { loi + mi(jw)l • Ici + ni(jw)l }112
for i = 2 ..... n - nR

Now, the frequency response error Ew(jW), for the general case

of a reduction from n to nR in one step, is related to the errors

Ewi(Jw) by
n - nR

Ew(jw)= _ Ewi(Jw)
i: t (43)

Taking the singular value of Eq. (43) and pulling the summation
outside the singular value yields

11 -n R

o[E_v(jw)] g _ o[Ewi(Jw)l
i= I (44)

Finally, substitution of Eq. (42) into Eq. (44) leads to the

approximate error bound for the general case, or t2
n- nR

_[Ew(jw)] < 2 E { Ioi + mi(jo.))l" lai + ni(jw)t }in
i--. t (45)

Since the reduced order models obtained by eliminating
one state at a time without rebalancing are nearly FWIB, the

argument put forth in Eqs. (29) thru (39), that states

corresponding t6 siiiiiller values of-o i also e0ri'4_po_i:l to the

smaller values of Io"i + mi(jw)l * Io"i + ni(jw)l, is applicable here.

Further, the maximum singular value of the weighted error can
be expressed as

_Z[E,,,] :_ [{a I - a"_}L,g_,la "_'- a"t'lC_c,d (48)

By expanding the products B_(jw)B:(jc0) and C,_w)C_(jc0)
and using the transformed, partitioned Eq. (5), it can be shown
that 12

gwg: = alZ_ + (xt2)z(-jw[ - A_,i)'lc:,g'l (49)

{E2 + BCwi(jwl -Awi)-l(X2l)2] A"

C_C,,v : A" ( E2 + (YI2)2(jwl - Awo)l BwoC ]

rE2 + C'B,_o(-jwl " " IAwo)" (Y21)2} A

where (X2I) 2 and (Y12)2 are partitions of X21 and Y12 as in Eq.

(22). After substituting Eq. (.t9) into Eq. (48), a[-Ew(jW)] can

be rewritten as 12

_2[Ew] =_ [(&'I(E2+M)A'-A"I(y_2+M)A'*+jwA"I(M-M') }
• • i

{&.t (y_2+N.)&.A.q (I;2.N0)A,+jwA.-t (N-N')]] (50)

where

MOw) = g(jo)Cwi(jwl - Awi)'l(X202 (51)

N(jw) = (YI2)2(jwl - Awo)'lBwoC(JW)

Note that the terms M(jw) and N(jw) are functions of the

frequency weightings.

For n - nR = l, then I; 2 = o n, A(jw) = 8(jc0), A'(jw) =

8'(jw), M(jw) = mow), and NOw) = n(jw) all become scalars.

and Eq. (50) yields 12

"82[Ew]={a+p]{a'+q}(an +m)(an +n') (52)

where

a(jw) =5" 0w)8 Gw)- a"xOw)8 ' O_) (53)

p(jo) = jwf"l(jo)[l - {an + m(jw)} "1' {an + m'(jw)}]

q(jw) =jog"|'(jw)[{on + n'(j_)] "1 • {o, + n(j_)} - 1]

provided o"n * - m(j(o) and O"n # - n'(jco) for all frequencies.

Therefore, by eliminating the states corresponding to the smalle/ iNote that an is a real number while mow) and n(j_) are

values of a i, one is also inherently eliminating the states

corresponding to the smaller values of lo i + mi(jw)l • Io i +

ni(jw)l, and the weighted frequency response error is
approximately bounded according to Eq. (45).

FWlB Residualization Error Analysis
Attention is now turned to the frequency response error

analysis f6r FWIB residualizadon. Much of the analysis and
notation appearing in this section parallels the frequency
response error analysis given in the previous section for FWIB
truncation. However, the reader is warned that the notation in

this section represents features of the residualization technique,
which are distinct from that of the truncation technique.

It can be shown that the weighted residualization error

can be expressed as 12

Ew(,jm) = g2w(jw){ A-10w) - N'l(jo) }§wOw) (46)
where

Bw(jo) = g(jw)Gwi(Jm) _Tw(j_) = Gwo(jW)_2(jw) (47)

g(jw) = B2 + A210(jw)BI e(j_) = C2 + CI_(jw)AI2

(P(jw) = Owl - Al t) 1

A(jw) = jwl- A22- A2LO(jw)AI2

A'(jw) =- A22- A210(jtO)AI2

complex numbers, making it unlikely that 0'n = - m(jo_) and o n =

- n'(jo_).) Since the right-hand side of Eq. (52) represents a

positive semidefinite matrix (Ew(iW)E_(jw)), taking the absolute

value does not alter the equality, or

2[Ew] = la + pl • la* + ql • IOn + ml • lo"n + nl (54)
{lal + Ipl} {lal + Iql} io'n + mi • ian + nl

Substitution of the inequality la(jw)l _ 2 into Eq. (54) yields the

error bound for order reduction by one state 12

where
_[Ew(jO)] -<k(jw) { lOn + m(jm)l • Inn + n(jw)l }1/2 (55)

k(jw) : { (2 + Ip(jw)l) • (2 + tq(jw)l) ]in (56)

Observe that the structure of this error bound is quite similar to
that for IB residualization It and in fact reduces to the IB result

when the weighting filters are selected to be unity (i.e., mow) =

now) = 0 and p(jm) = q(jm) = 0). Note however, the scalar

multiplying the a n term is now frequency dependent.
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An anah, sis similar to that given m Eqs. C29) thru (39)

for FWIB residualization 12 shows that states corresponding to

smaller values of o. i also correspond to the smaller values for Io.,

+ m(jco)l • Io.i + n(j¢o)l. Therefore, if a state corresponding to a

small o i is residualized, then one is also inherently eliminating a

state corresponding to a small Io.i + m(j(o)l * lo. i + n(jc0)l, and the

weighted frequency response error is bounded according to Eq.
(55).

Analysis Of Ip(j¢.o)l And Iq(ko_)l

One concern in the above argument is the values of

Ip(jt0)l and Iq(j¢o)[, especially as co tends to infinity, since these

terms contain j(o in the numerator as seen from Eq. (53). A

direct analytical calculation of the maximum values of Ip(,j¢o)t and

Iq(j¢.o)l is not practical; however, note the following observations

from Eq. (53). When ¢o tends to zero, p(jc0) and q(jco) tend to

zero, or 12

lira p(jco) = 0
¢o --, 0 (57)

l_ 0 q(jco)= o

When _ tends to infinity, the limits of p(j(,o) and q(.jo2,) from Eq.

(53) are indeterminate because jo tends to infinity and both the

terms 1 - {o. n +'m(jco)} "1 • {a n + m*(j¢o)] and {o.n + n'(j¢0)} "l •

{o.n + n(,j¢o)] . I tend to zero. By using l'HopitaI's rule, 12

lira p(joO= 2 + B2DwiDLiB_

¢o _ ** o'nA22 (58)

lira q(jm) = 2 + C_D_,,oDwoC2
co _ ** ¢_nA22

For intermediate values of co, a direct numerical calculation of

p(j_) and q(jm) for specific examples reveals that tp(jco)l and

Iq(j¢o)l are typically no larger than the limits in Eq. (58).

Ap0roximate Bound For The Genentl Case

Unfortunately, the error bound for order reduction by
one state again can not be applied successively to obtain an error
bound for the general case of order reduction by more th:m one
state. This is because the reduced order model from

residualization is not FWIB. This is shown by multiplying the
first of the transfommd, partitioned Eq. (5) by Z I on the left and

Z_ on the right while muhiplying the second of the transformed,

partitioned Eq. (5) by _ on the left and 7_.2 on the right where

F' i][ I-A12A_12 0] Z2 = -A_A21
ZI = 0 0 I _ L 0 (59)

This leads to

AXRXR + XRAXR + BXRBXR = RX (60)

AYRYR + YRAy R + CYRCY R = Ry
where

[ (All-A12A2]2A21)(B1-A12A212B2)Cv,,i l
AXR = 0 Awl (61 )

AyR=I (A22"A12A21A21) 0 l
Bwo(Cl - C2A%IA21) A_. o

BXR= [ (BI'AI2A_B2)DWiBwi ]

CYR = [ - _,Dwo(Cl C2A212A21) Cwoj

XR = I 5_1 (xI2)I ] YR = [ Yl (YI2)I ]1
(X21)l Xi2 (Y21)I Y22 J

RX=[ RXll Al2A_2(Xl2)2Awi i
Awi(X21)2A_A_2 0

RXll = 031- A 12A_.½B2)Cwi(X21)2A:_A_2

+ AI2A_,12(XI2)2C_i(B; - B2A:',t2"A_2)

Awo(Y21)2A22A21 0

RYl! = (C;- A_IA!I.'C;)Bwo(Y2I)2A_12AH

+ A_IA_,/*(YI2)2Bwo(CI - C2Ar}A2I)

For the reduced order model to be FWIB, the residual terms Rx

and Ry would have to equal zero and they are clearly not zero,

in general.
As shown for F'WIB truncation, the residual terms will

be small if a truly small ¢_i is eliminated. 12 In this case, the

model resulting from order reduction by one state is nearly

FWIB. Denote mi(.jco), ni(j¢.o), and 8f'(j¢o) as the variables

corresponding to m0w.o), n(j¢o) and 5'(j¢o), respectively, in Eqs.

(47) and (51) for successive order reductions by one state

without rebalancing, and define pi(,Jo0, qi(j¢0), and ki(j¢o) as
'-l

pi(j(o) = j¢..o8i (jco)[1 - {o.i + mi(jr,.o)} "1 ' {o.i + mT(jr.o)}] (62)

,.]_'

" 1
qi(J ¢0) = j¢._i (jo3)[{o.i + ni(Jc0)}" • {OOi+ hi(jr0)} - I]

ki(j(o) = { (2 + Ipi(jc0)l) ° (2 + Iqi(.jc0)l) }I/2

Also dcnote Ewi(jco)as theweighted frequency response error

foreach successiveorderreductionby one state,or

o[Ewn(JCo)]- kn(jco){ ICrn+ mn0CO)t•Io.n+ nn(jco)l}I/'2.

o[Ewl(jco)] < ki(jco) { lot + mif.jco)l •k_i + ni(j(o)l }ta

for i = nR + l ..... n - ]

(63)

Now, the frequency response error E,.v0_), for the general case

of a reduction from n to nR in one step. is related to the errors

E,,.,i(jo,)) by
n

Ew(jCo) = X Ewi(,Jc°)

i --nR + I (64)

Taking the singular value of Eq. (64) and pulling the summation
outside the singular value yields

olEw(j_)] -< i _[Ev,'i(Jc°)]

i = n R + ] (65)

Finally, substitution of Eq. (63) into Eq. (65) leads to the

approximate error bound for the general case, or 12
n

_[E_,.(j¢o)] < _ ki(j¢o) { Io.t ÷ mi(jo))l • Ich + ni(,j¢.o)l }1/2.

i = n R + 1 (66)
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Since the reduced order models obtained by eliminating
one state at a time without rebalancing are nearly FWIB, the

argument that states corresponding to smaller values of Gi also

correspond to the smaller values oflo" i + mi(jco)l • r(_i + ni(jco)l is
applicable here. Therefore, by eliminating the states

corresponding to the smaller values of _i, one is also inherently

eliminating the states corresponding to the smaller values of I_ i ÷

mi(.j_0)l • Ic i + nit,ion)l, and the weighted frequency response error

is approximately bounded according to Eq. (66).

Examples
Consider the model given in the Appendix describing the

stable longitudinal dynamics of a large, flexible aircraft, similar
to that studied in Reference 8. The model is 12_ order with
phugoid, short period, and four aeroe[astic modes. Control

inputs consist of elevator deflection ,5E and canard deflection 8C

while responses of interest are pitch rate q' and vertical
acceleration a z. from sensors located near the cockpit.

Suppose an accurate reduced order model is desired in

the frequency range above 3 rad/s. A 5_ order model is

obtained by FWIB truncation (from 12_ to 5th order in one step)
using an input weighting filter with unity magnitude above 3
rad/s and 40 db/dec attenuation below 3 rad/s. The frequency
responses of the reduced order and higher order models are

shown in Figures 4 and 5, indicating the 5_ order model
accurately reflects the dynamics of the higher order model in the
weighted frequency range as desired.

To investigate the assertion that a reduced order model,

az/GE

A
.-9

,=

t

80

6O

4n

2c

n

obtained by the elimination of a single state corresponding to a

small cri, is nearly FWIB, consider the following from Eq. (40).

A22(XI2)2+B2CwiX22+(XI2)2Awi+B2DwiBwi = -A21(XI2)I

ZI Z2 Z3 Z4 RXI2
(67)

Table 1 contains the average values ofZ 1 thru Z 4 and RxI 2 for

the reduced order models obtained by the truncation of one state

at a time, based solely upon the _i's and without rebalancing,

leading to the 5th order model. Observe that the residual term

RX12 is small relative to the terms Z 1 thru Z4, making the
reduced order model essentially FWIB.

Attention is now turned to the assertion that elimination

of a state corresponding to a small (_i inherently eliminams a state

corresponding to a small to i + m(jm)l • (_i. (Note n(j¢0) = 0 for

no output weighting and to'il = oi.) Table 2 contains the

maximum values of In i + m(jco)t • o"i for the reduced order

models obtained by the truncation of one state at a time, based

solely upon the 6i's and without rebalancing, leading to the 5 th

order model. Observe that at each step, the state with the

smallest t_i also corresponds to the state with the smallest max

I_ i + m(j_)l • o"i denoted by the underline, supporting the

lot 1_

'°tq'/GE ............. -. l
2O

+,o[ i
10.3 lO-Z IO, l IOO lot l_

freq. (tad/s)

Higher Order
Reduced Order

Figure 4. Frequency kcsponses From FWIB Truncation
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+

10.3 lOz lOd 1OO 10t

freq. trY/s)

30

reduction algorithm based only upon the o'i's.

nR II

RXt2 0.000031

Z1 3.8

Z2 6.2

Z3 3.9

Z, t2

Table 1. Rxt 2 Data For FWIB Truncation
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Table 2. _h ÷ mfj_oY • O, Data For FWtB Truncauo_

n R

max to, + rn(j (o)' "a,

l] |0 9 8 7

1 o.ooo0o17

2 0,0078 O.O079

3 0.0079 0.0079 0.0078

i 4 3.5 3.5 3.5 3.5

J 5 49 49 49 49

6 1B0 180 180 lg0
i

7 2400 2400 24_ 24_

8 _000 64OOO _000 _000

9 200000 200000 20(XO 200000

l0 23000 23000 23000 23000

111400000 400000 400000 400000

12 sl0000 s]oo00 sl0000 s]o00o

/8Es°

g

[ 2o

Now suppose a different reduced order model is required
in the frequency range below 3 rad/s. A 5 th order model is

obtained by FWIB residualization (from 121/1 to 5 th order in one
step) using a weighting filter with unity magnitude below 0.5
rad/s and 40 db/dec attenuation above 0.5 rad/s. The frequency
responses of the reduced order and higher order models are

shown in Figures 6 and 7, indicating the 5th order model

accurately reflects the dynamics of the higher order model in the
weighted frequency range as desired.

Again, to test the assertion that a reduced order model,
obtained by the elimination of a single state corresponding to a

small o i. is nearly F'WIB, consider the following from Eq. (60)

ARZI + X,IAR=.=._+B.RRCwi(X21)I + CXI2)ICLiB_ =

ZI Z2 (68)

BRCwi(X21)2A_ffA_ 2 + 1 " "A 12A_2(X 12)2CwiB_ R

RX]I

AR(XI2)I + BR.B_Cwi..i___+ (X]2)IA_,, ! "= AI2A_(XI2)2Awi

Z3 Z4 Z5 Rxl2

where Dwi = 0 for this weighting, and A R and B R are the

reduced order system matrices defined by Eq. (15). Table 3

contains the average values of ZI thru Z5 as well as RXI I and

RX12 for the reduced order models obtained by the

residualization of one state at a time, based solely upon the oi's
and without rebalancing, leading to the" 5 th order model.

Observe that the residual terms RXI 1 and RXI 2 are small relative

to the terms Z 1 and Z 2 and Z 3, Z4, and Z5, respectively, making
the reduced order model almost FWIB.

Furthermore, to test the assertion that elimination of a

state corresponding to a small o i inherently eliminates a state

corresponding to a small Io i + m(jco)l • o i, Table 4 contains the

maximum values of Io"i + m(jc0)l - oi for the reduced order
models obtained by the residualization of one state at a time,

based solely upon the ai's and without rebalancing, leading to

the 5th order model. Observe that at each step, except for nR =

11 and 5, the state with the smallest oi also corresponds to the

state with the smallest max Io i + m(jco)l • o i denoted by the
to

underline, supporting the residualization algorithm based only

upon the oi's. Cl'he values of max 1o i + m(jco)l • o i for i = I 1
to

and 12 and nR = 11 are nearly in the correct sequence.) Finally,

6 5
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nR

RXIt

rx_,

24

z5

11

0.0_332

78
78

0.0012

8.6

8.5

0.22

Table 3. R×tt A_d Rxt2 Data For FW'[B Residualization

7

0.81

10 9 8 6 5

0.00029 0.0,i2 0.0084 omo 30

87 280 llo 920 130 2700
s7 2so _0 920 _30 2700

0.0000016 0.011 0.00010 0.0J.0 0.00035 0.92

_.4 2a 8.3 51 g.a 150
,1

8.4 ] 24 8.2 51 8.3 15i)

0.2a [ 0,27 0.30 0.3a /).39 0.41

Table 4. I_ i + m(,j _)1 • o i And I pi(J_)l Data For FWIB Residualization

n R n R

RX| l = n-J_"R2i =_ff_l j _ ! I(RxI 1 )ijt

nR p

._L y 2 ¢RxtzV_'xl2 nrp
=lj=l

.r nn

a=ff Y. Y to, >,:_
la_ ,1=! k=Â

nR p

Zi "_ __.., E 1(7-_)ikl for i=3,4,5nRpj Ik-l

rl R

rr!._li Iol .i. rrl(j f,a)t. _l i 12

' I1

10

i9
J

t'7
i

6

5

4

2

I

II I0 9 g

0.0000035

0.O00025

0.0033 0.0033 0.0033

0.13 0.13 0.13

1.5 t.5 1.5 1.5

55 55 55 55

930 930 930 930

120 !20 120 120

,:1200 4200 4200 a200

3100000 3100000 3100000 3100000

230000 230000 230000 230000

62000 62000 62000 62000

2.0 i .4 2.0 1.8

7 6 5

1.5
55
930

120

4200

3100000

230000

62O00

t.2

9.1
930

120

"1200

3100000

230O00

62000

1,7

920

J._
-_200

3100000

230000

62000

2.0

Table 4 also contains the peak values of pi(jco), which appear in

the frequency dependent factors multiplying the % terms in Eq.
(66). Note the peak values are approximately 2 or less, as
predicted.

It is important to realize that in the above two examples,
the regions of interest consist of the high and low frequency
ranges, implying that in each case, the states to be eliminated
should be either truncated or rcsidualized, respectively. 8 In fact,
for the first example, a 5_ order model obtained from FWIB
residualization does a poor job of matching the dynamics of the
higher order model in the weighted frequency range, while in the
second example, a 5tit order model obtained from FWlB
truncation does a poor job of matching the dynamics of the
higher order model in the weighted frequency range.

To demonstrate that F'W]B truncation and residualization
may be used in coordinated manner to achieve higher accuracy
than that attainable from either technique used alone, suppose an
accurate reduced order model is desired in the I to 10 rad/s
frequency range. An input weighting filter with unity magnitude
in the 1 to 10 rad/s frequency range and 40 db/dec attenuation
otherwise is used. One 4.th order model is obtained by FWlB
truncation. Another ,1_ order model is obtained by a
combination of FWlB truncation and residualization. In this

technique with the o'i's ordered from smallest to largest as in Eq.
(11), the states x I and x6 are truncated and states x2, x3, x4, x5,
x7, and x8 are residualized. By performing a modal analysis on
the FWIB model, or by eliminating one state at a time and
observing which mode is essentially eliminated, it can be found
that states x I and x6 are associated with a low frequency
(phugoid) mode while states x2, x3, xa, x5, XT, and x8 are
associated with modes at high frequency relative to the
frequency range of interest. The frequency responses of the
reduced order and higher order models are shown in Figures 8
and 9.

As seen in Figures 8 and 9, both 4/21.order models
accurately reflect the dynamics of the higher order model in the
weighted frequency range as desired. However, note in the

q'/8 E and q'18c frequency responses that the reduced order
model from FWIB truncatlon/residualization has improved
accuracy in the 0.1 to 1 rad/s frequency range relative to the
reduced order model from FWIB truncation. Note this is

achieved at the expense of less accuracy in the q78E frequency
response around 40 to 100 rad/s. These results demonstrate that
even with FWIB truncation and residualization, the user should
still be aware of the classical order reduction knowledge that
truncation is most appropriate for eliminating lower frequency
dynamics while residualization is most appropriate for
eliminating higher frequency dynamics. 8

Conclusions

The real imporzance of a frequency response error
analysis is not for an a priori assessment of the numerical
reduction accuracy, but rather in gaining insight, offering
guidance, and giving justification for the technique. TbeFWIB
truncation error analysis presented here gives support for the
truncation of coordinates based solely upon the Welghted
conzrollability-observability measures, and explains-how" these
measures contribute to an upper bound on the frequency
response error. FWIB residualization has been shown to be an
equally valid order reduction technique possessing frequency
response error properties similar to that for FWIB truncation.
Finally, FWIB truncation and residualization can be used in a
coordinated manner, consistent with classical truncation and
residualization, to obtain higher accuracy than that achievable
from either technique used alone.
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Appendix
The aircraft model is

= Ax + Bu (69)

y=Cx+Du

az (fgs2) 6C (rad)

A--[ All Ai')]
A21 A22

y=

(70)

.I.451e.2 1,935c+1 .3.220e+1 -1.907e+0 0 0

.1,487e-.4 -4.285¢-1 0 1,025e+0 -4.223e-3 -1.445e-4

0 0 0 l.:*0 0 0

1.105¢-4 -3.430e+0 0 .11.335e.1 -6.625c-2 .3.$14c-3

0 0 0 0 0 I .¢+0

4.227e-1 .1.072¢.3 0 -7.935e+1 -3.536c+t -6.02Be-I

0 0 0 0 0 0

4.487e.2 1.755e-3 2.170e-3 1.036e-4 " -2.053e-3 -3.391c-5

O 0 0 0 0 0

-5.160e-2 2.950e-2 g.544¢-2 4.1')6e-3 .3.777e-2 -l.t90c-3

0 0 0 0 0 0

-6.475e*0 -1.6,4"7e-I 2.5.54e+I 5.435e-1 1.633¢+0 -l.171e-I
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3.078e-5 |.014e-2 0 9 965e-5 6.696c-3 - Lg54e-4
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Whether the engineer is developing a system model for dynamic analysis, control law
synthesis, or simulation, a simple low-order model with the requisite validity is desirable for a
variety of practice reasons. The question arises, therefore, as to how to obtain such a simple yet
valid model. Even more fundamental is the question of what model characteristic are important
such that one may strive to retain them. Although the initial question has been addressed for some
time, from the attention still paid to model and controller order reduction (c.f. Refs. 1,2), it appears
that the issues still remain unresolved.

In Refs 3-6, some previous offerings on the subject are presented. In this paper,
discussion will continue, in the attempt to expand on some of the earlier results, to further clarify
the theoretical basis behind the proposed methodology, and to reveal some important aspects of not
only model-simplification, but also control-law synthesis for elastic vehicles.

1. Criteria for Modeling

The objective in model simplification, as with all system modeling, is to develop a
fundamental understanding of the system in question. For the model to be useful, it should predict
to the required engineering accuracy the behavior of the actual system. Note that it does not have
to predict with perfect accuracy, and that is not possible anyway. The required accuracy depends
on the application for which the model is intended.

In this paper, as in Refs. 3 - 6, the intended application of the model is to predict the
behavior of the system when it is subject to feedback action, as shown, for example, in Fig. 1.
Clearly, then, the critical characteristics of the actual system that must be adequately captured by
the model are those characteristics important in a feedback system. (Note that the feedback action
could represent an automatic control system, as well as that of a human, or manual controller.)
Finally, the existence of a sufficiently valid, although perhaps complex model for the system is
assumed to be available - admittedly a big assumption. Further, if this model is infinite-
dimensional and/or non-linear, it is assumed that a locally linearized, f'mite-dimensional model may
be obtained. The original (complex) model will be denoted as G, while the linear model will be
denoted as G.

As a result of any simplification process, differences between the more-accurate model and
the simple model arise. Or conceptually, if G R is a simpler model for G, the model-simplification

error may be considered to be AG = G - G g. These errors are key to the research presented here.

In contrast, model-simplification errors arising due to the development of G, or AG = G - G, will

be considered only indirectly.

The critical question then is what errors AG are critical, or should be minimized, and what

procedure will do so? The answer to the first part of the question could be that AG's critical in a

feedback loop should be minimized. Further, if these AG's are interpreted more generally as

model uncertainty rather that model-reduction error, the recent research on multi-variable
robustness theory may be bought to bear on the model-simplification problem. This is the main
idea in this research.



2. Robustness and Model Reduction

In this section, some key results from robust control theory will be noted, and they will be
interpreted in the context of the model reduction problem.

With reference to the system shown in Fig. 2, G R is the transfer-function-matrix

representation of this simplified model, AG(s) in the analogous representation of the model-

simplification error, and the full-order linear model is G = G R + AG. Likewise, K(s) is the matrix

of control compensators, perhaps to be designed using G R. Clearly in this context, one desires

that the K(s) so obtained will control the "true" G(s) as predicted through the use of G R. Attention

is now turned to exposing the critical AG's via multi-variable Nyquist theory.[ 7]

Let _(s) be an analytic function of the complex variable s, and let the number of zeros of

O(s) in the open right half of the complex plane be denoted as z. Then the Principle of the
Argument states that

N
R_oo (0, O(S), DR) = Z

or the number (N) of clockwise encirclements of the origin made by the image of the contour DR,

under the mapping of _(s), as s travels clockwise around D R , equals z. Here D R is the "Nyquist

D contour" that encloses the entire fight-half of the complex plane. Clearly, with regards to

stability, the O(s) of interest is the closed-loop characteristic polynomial of the feedback system,

denoted by OCL(S).

Now, as shown in Ref. 8, and elsewhere, and referring to Fig. 1, for example,

OCL(S) = OOL(S ) det [I + GK]

= OOL(S) det [I + KG] (1)

where OOL(S ) is the characteristic polynomial of the open-loop system KG(s) or GK(s). That is, if

either the transfer function matrix GK(s) or KG(s) has the state-space realization

/¢ = AGKX+ BGKe

y = CGKx

then OOL(S ) = det[sI - AGK], and the zeros of OOL(S) are the open-loop poles of the system. Note
that Eqn. 1 may therefore be re-written as

OOL(S) = det[sI - AGK] det [I + CGK [sI - AGK]-I BGK ]

Now if the number of fight-half-plane zeros of OOL(S) is p, then the number of right-half-

plane zeros of det [I + CGK [SI - AGK]-I BGK ] must be z-p. Furthermore, from the Principle of the

Argument



N
R--+oo(O,det [I + CGK(SI- AGK)-1BGK] ,DR)= z-p

Consequently,if p is known,z maybededucedfrom

z = p + (z - p)
= p + [RNoo(O,det[I + CGK(sI- AGK) "1 BGK ] ,DR) ]

or closed-loop stability is determined from knowledge of p and the examination of the Nyquist
contour for det[I + GK] or det [I + KG]. Therefore, the closed-loop system is stable if and only if
the Nyquist contour for det[I + GK](= det[I +KG]) encircles the origin counterclockwise exactly p
times.

Of course the determination of z is possible from other means, and the real utility of the
above fact is in defining the concept of relative stability, and in identifying factors that are critical to
closed-loop system stability. These issues are of special import here.

Consider the model error, or uncertainty, to be AG (as in Fig. 2), and assume that K is

such that KG R leads to a stable closed-loop system with good stability margins. (Note this
assumption should always be true as it involves a key objective in determining K(s) using G R to
begin with.) Then if (assumption 1) the number of right-half-plane poles of KG (= p) is identical
to the number of right-half-plane poles of KG R (=PR), K will stabilize G if and only if

(assumption 2)

R_ooN (O, det [I + GK], DR) = RNoo (O, det [-I + GRK], DR)

or the number of encirclements of the origin made by the Nyquist contours associated with G and
with G R are identical.

Let
Stability is guaranteed as follows:

z = no. of unstable closed-loop poles of the KG loop.
zR = no. of unstable closed-loop poles of the KG R loop

P, PR - defined above

Then to show stability (or z = 0), note that if (assumption 1) PR = P, then

z = zR - (z R - PR) + (z- p)

By the assumption KG R leads to a stable system, zR = 0, and from assumption 2, (z R - PR) = (z-

p). Hence, z = 0.

This now establishes in a meaningful way, qualitative criteria for model simplification, the

simplification must at least lead to AG's such that assumption 1 and 2 are satisfied. But the criteria

goes further. Not only must stability of the KG loop be assured (i.e., z = 0) but the margins
"designed" into KG R should carry over to the closed-100P system associated with KG. Otherwise,
the K so designed would not be satisfactory. It is for this reason that any model reduction
technique that just assures stability of the full-order closed-loop system may not be good enough!

To satisfy assumption 2, or to assure that the number of encirclements of the origln is

unchanged due to AG, requires that [9]

4



det [ I + GaK + EAGK]_:0 v m>0, I_e [0,1] (2)

In otherwords,if astheNyquistcontourfor det[I + GRK]iscontinuallywarpedto thatfor det [I +
GK] theorigin is neverintersected,thenumberof encirclementsof theorigin cannotchange.
Furthermore,Eqn.2 is assuredif (c.f.,Ref.9)

(AGK) < __[ I + GaK] v to>0

Finally, it isknownthatanalternativeto Eqn.3 is

(Era)< __[I + (GRK)-1]= _c{[GRK (I + GRK)-I]-1}

whereE m = GR-1AG

(3)

v to>0 (4)

The above expressions (Eqns. 2 - 4) may be extended by breaking the frequency domain

(0 _< co < oo) into the domains (0 < co < co*) and (co* < co < co). Note that these domains are non-

intersecting. Now it can be argued that Eqn. 2 will be satisfied if

det [ I + GRK + e_.AGK] _: 0 (0 5 co 5 co*) (5)

(0<e_< 1)

an___dd

det [ I + GRK + eAGK] _ 0 (co* < co < co) (6)

(0<e< 1)

Further, Eqn. 5 is assured if Eqn. 3 is satisfied for co < co*, while satisfying Eqn. 4 for co > to*
assures that Eqn. 6 is satisfied. Hence, in such a situation, Eqn. 2 is satisfied.

By Eqns. 3 and 4, quantitative criteria on critical AG's are established. Further, the overall

strategy for model simplification becomes apparent, and the interaction between model
simplification and control law synthesis is underscored. Regarding the later, it should be clear that

the allowable AG's (those that do not destroy closed-loop stability of the full-order system

controlled by K(s)) depend on K itself. In other words, designing a "good" K(s) increases that

allowable AG, while designing a bad one may put very strict limitations on the allowable AG, and

hence model accuracy. The former K(s) is robust, the latter is not.

Regarding the model simplification strategy, then, first observe the right side of Eqn. 3.

When __ (GRK) >>1, __[I + GRK] -- __ (GRK). Conversely, when _(GRK)<<I, __ [I + GRK] _ 1.

Finally, the g [I + GRK } will take on its minimum value in the frequency range where (Yi(GRK) --

1. The frequency range where the latter occurs is of course the (multi-variable) gain crossover

region. Consequently, it is this frequency range where the AG must be the smallest, and this can

be assured if each element of the AG matrix is small in this frequency range.
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Also, noting the abovediscussion,Eqn. 3 may be satisfiedby rather largeAG in any

frequencyrangewhere_c[I + GRK] is large,andthis will occurwhenG (GRK)is large. If K is

designedto give agoodclassicalBodeloop shape,_c(GRK)will belargefor frequenciesbelow
crossover.[91

i
i
i
I
i
i

Now consider Eqn. 4. When er (GRK) <<1, _G(GRK)-I>>I ' and _G {I + (GRK)-I] = _G

(GRK)-I>>I. Hence the allowable AG may also be rather large in this case. Further, if K yields a

good loop shape, or is well attenuated, at high frequencies, _ (GR K) will be small for frequencies

above crossover. So clearly, the AG must be smallest in the region of multi-variable crossover,

while if K yields a good bode loop shape, rather large AG elsewhere may be acceptable and Eqns.

3 and 4 may be satisfied. The above discussion is summarized in Fig. 3.

The final issue to be addressed is that of satisfying assumption 1, or the number of unstable
poles of KGR must be identical to the number of unstable poles of KG. First note that this is

equivalent to requiring the number of unstable poles of G and GR to be the same, since only one K

is involved. Then observe that the poles of G are the poles of G R + AG, which consists of the

poles of G R plus the poles of AG. Hence to satisfy assumption 1, AG must be stable.

Attention will now turn to some additional criteria arising from performance considerations
rather that from stability robustness. The system to be considered is that shown in Fig. 4. The
vector of responses Y(s) is given by

Y = [I + (G 1 + AG: )K] -1 (G: + AG:)K(Y c - N)

+ [I + (G: + AG1)K]-: (G 2 + AG 2) D

Here G 1 is the reduced-order model for the response of G to control inputs, where G 2 is the

reduced-order model for the response of G to disturbances being considered. AG1 and AG 2 are the

analogous model-simplification errors.

The first observation to be made is that stability and stability robustness depends on G: and

AG l, not on G 2 and AG2. Note that the poles of (G: + AG 1) are the poles of the "true" plant G, as

are the poles of G 2 + AG 2. Hence if K stabilizes G, which will be assured if G: and AG: satisfy

the criteria developed previously, K must therefore stabilize (G 2 +AG_). This is significant since

some (stable) poles of G may be approximately cancelled by some zeroes for the transfer functions
governing responses to control inputs, but not cancelled in those governing responses to
disturbances. Cancelling these poles to obtain G1 has raised questions by some as to whether

those poles so cancelled could lead to problems later in analysis. The answer appears to be that
they will not if G 2 is obtained such that those poles are retained. But from the above discussion on
stability, the only reason to keep these poles in G 2 (that by assumption are not approximately

cancelled) is such th_at the disturbance-rejection performance predicted using G 2 (when designing

K, for example) will be reasonably accurate.



Finally,notingthatthedisturbanceresponsedueto AG2is

YD2= [I + (G1+ AG1)K]-1AG 2 D

for good performance prediction (YD2 small), AG 2 should tend to be small whenever D is large and

(G 1 + AG1)K is small. But here again, if K is designed to obtain a "good loop," it will be

designed such that G1K (and by implication (G 1 + AG1) K) will be large over the frequency range

where D is large. Consequently, this should not pose stringent requirements on AG 2.

In ending this section, it is worth noting that assuming K is designed properly has been
critical. By doing so, one takes advantage of one of the basic advantages of a good feedback
system, reduction in sensitivity to plant (or plant model) variations. This allows the development
of a modeling procedure that focuses on the really critical problem of obtaining a good model in the
crossover region.

3. Methodology and Sample Results

The procedure offered was discussed in detail in Ref. 5, and the computational technique is
summarized again in Table 1. The technique is a frequency weighted internally-balanced approach,
with stable factorization in the case of an unstable plant G. The stable factorization procedure sets
the unstable subsystem of G aside via partial fraction expansion, leaving the remaining subsystem
G s stable. This stable subsystem is then reduced, such that a stable reduced order model GRs is

guaranteed. The unstable subsystem is then rejoined with GRs to obtain the final reduced-order
model G R. By this procedure, the number of unstable poles of G are preserved. In fact the

unstable poles in G are exactly retained in GR..

The internally balanced technique It0] requires the frequency-weighting extension[Sl since

the basic technique leads to small model-simplification errors AG where the elements of G have

large magnitude, which is not necessarily the crossover region. Further, a very poor model may
be obtained where the elements of G have small magnitude. As will be shown later, this can be
totally unacceptable.

In Ref. 11, a frequency-weighted approach was also suggested, but the weighting required
the knowledge of the compensator K, obtained using the full-order plant. Since designing a simple
K using the simpler plant G R is the typical design objective, the above weighting is undesirable. In

Ref. 5, it was noted that simply adding a weighting filter obtainable by inspection of the Bode plots
of G and knowledge of the desired crossover frequency range let to excellent results. This filter is
easily discarded after G R is retained. In the example presented later, it will be shown that this
approach again appears quite acceptable.

The key to the concept is the knowledge of the fact that the internally balanced approach

yields a small AG where the elements of G have large magnitude. Heuristically, if a filter W(s) is

used such that W(s)G(s) has large magnitude in the required frequency range, and if WG reduced
such that WG R is obtained, then G R will have the desired properties.

As the example, consider an elastic aircraft identical to the configuration investigated in
Refs. 3 and 6. This configuration is of reasonably conventional geometry with a low-aspect ratio
swept wing, conventional tail, and canard. A numerical model for the longitudinal dynamics is



Table_ _-,requencyWeightedIntema]h,BalancedReduction

Given: System state space description A, B, C and weighting filter state space

description A,,,, B,,,, C._.

Find: r_ order system

Step I:

Step 2:

Solve for X and Y

A.j x_, x.j + x:, x=j C2BTA

_B v a Y2_Y=I+ v_ Y=J Aw;+

+ .]
BwB,_

[c:i o
Find T and E where XY = TE2T "1, T = ['r r T_r], T -T = ['[Jr, Ur,--r]

where

i= 1.....r

i=r+l, "-',n

=0

Stop 3 : r th order system is

A_=VTAT.

B r = UJB

Q= CG



available from the above references. Both rigid-My modes and four elastic modes (resulting in a

11 th order model) are included. The in-vacuo vibration frequencies are 6.3, 7.0, 10.6, and 11.0

rad/s, and are representative for a supersonic/hypersonic cruise vehicle. These frequencies,
furthermore, are all near the anticipated frequencies at crossover for the control systems to be
designed.

Control inputs are elevator deflection i_ and canard deflection 8 o while the disturbance is

the perturbation in angle of attack due to atmospheric turbulence ag. Selected responses are
vertical acceleration az' measured at the cockpit and pitch rate q measured at the antinode of the first

bending mode. Therefore, the flight and structural mode control loops in the context of Figure 4,
might correspond to the following, for example

y = [a z, q]T

U = [(_E (_C]T

D=Otg

Obtaining the reduced order model G 1 was the subject of Ref. 6. An anticipated crossover
frequency range (for G1K) was assumed as 1 to 10 rad/s. In that reference, it was also noted that a

fourth-order for G 1 was sought based on the observation that the full order model has two
oscillatory models in this frequency range.

Attention is now turned to the requirements for G 2. As a realistic example, the Dryden gust

spectrum for turbulence is used to describe the disturbance. A fourth-order model for G 2 is sought
based on the observation that the full order model has two oscillatory models in the frequency
range where the spectrum of D is largest. This frequency range is coincidentally also 1 to 10 rad/s.

The reduced order models for G: and G 2 were then obtained simultaneously from the

frequency-weighted internally-balanced reduction technique 5 which was specifically developed to
meet the criteria in Section 3. The frequency-weighting filter used was a band pass filter of unity
magnitude in the 1 to 10 rad/s frequency range with 40 db/dec roll off on either side of this
frequency range.

Table 2 contains the reduced order state space matrices A, B, C and D. Figures 5 through
10 show the reduced order and full order frequency response magnitudes for G 1 and G2. Observe
that the reduced order model accuracy approximates the full order model in the 1 to 10 rad/s
frequency range as desired. To complete this example, a simple control law, consisting of three
constant gains was synthesized using the model G1. The synthesis objective was to augment the

damping of the first aeroelastic mode with acceleration feedback to the canard, to augment the short
period damping with pitch-rate feedback to the elevator, and to provide some response decoupling
with a cross feed from the elevator to the canard. The resulting control law is of the following
form

Actuation effects were modeled with simple first-order lags, with corner frequencies at 20 r/s for
both the canard and the elevator.



Table 2 Reduced Order Model
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u

"-.9932 .8294 -.0138 -.05071-31.67 14.48 113.59

-2.013 -.0137 .0121 .0329 [ 35.92 -21.42 _-24.38

-5.593 -.6638 -.3175 -9.658 ]-593.7 -420.00700.1

4.934 .2098 3.739 -.5171 -231,4 -175.2 I 342.5
.0665 -.03471 .0017 .0015 0 0 J 0
8.762 .7218 .9287 -2.038 52.01 -244.5 J 333.0

y=[a q (r/s)] u =[88Ec(rad) ] D = ag (rad)z' (ft/s)J (rad)J

Shown in Fig. 11 is the plot of Eqn. 3, while Eqn. 4 is shown in Fig. 12. Note that
although this control law did not result in high gain (large G, K) at low frequencies, Eqn. 3 was
still satisfied below crossover region. Conversely, Eqn. 4 is satisfied, although barely, in the

frequency range above crossover. Hence, from the argument in Section 2, if co* in Eqns. 5 and 6
is in the crossover region, stability is assured. For reference, the pitch-rate to elevator transfer
function is

q(s) = 50 (0.33)[.13,4.84][.01,10.61[.03,11.01[.21,13.](45.)

5Ec(S) [.53,1.811[.15,4.781[.02,10.81[.03,11.1[.19,13.3](19.)(69.)

4. An Additional Criteria

As noted in Section 3, the AG arising from the model simplification must satisfy stringent

criteria in the crossover region, and if Eqn. 3 and/or 4 (or 5 and 6) is satisfied, closed-loop stability

is assured. To be discussed here is the fact that the controller K should not be such that small AG

is amplified such that _ (AGK) becomes large. It will be shown by example that this can easily

occur where the magnitudes of G (or of the g!j's) are small. Hence, the example will demonstrate
why obtaining a good model in this situation is important (recall that unweighted balanced
reduction has a problem here), and some implications regarding control-law synthesis will also
arise.

Consider the simple scalar plant

g(s) = (s 2 + .04s + 1.2)
s(s 2 + .032s + 0.82)

The plant is stable and minimum phase, so a robust control law should be obtainable. Using
LQG/LTR or H,o, for example, the following compensator could be obtained.



k(s) = .8(s 2 + .032s + 0.8 =)

(s 2 + .04s + 1.2) (s + 8)

It can be easily verified that the loop shape kg is very good, yielding infinite gain margin, 90
degree phase margin, and good roll off above 8 rad/s.

Now assume that the "true" plant is

gtrue = 0.69 (s2 + .048s + 1.22)

s(s 2 + .032s + 0.82)

or the numerator "frequency" is in error by 20% (1.0 ---) 1.2). Note that this could occur, for
example, if a vibration mode shape was slightly off in the modeling. Shown in Fig. 13 is the plot

of Eqn. 3 for this example, and clearly (_ (Agk) > ff (1 + gk) at 1 r/s (the designed crossover

frequency). Further, a quick check would show the kgtrue loop to be unstable. But the IAgl -- Ig -

gtrue I (not shown) would be found to be rather modest at co = lr/s, with much larger IAgl at lower

frequencies. The problem could be interpreted as one of the control law k amplifying the IAgl at co

= 1 r/s, and this is confLrmed from the plot of Ik(jto)l in Fig. 14.

Stability of the kgtrue loop would result, and Eqn. 3 satisfied, if the Ik(jm)l at co = 1 rad/sec

were simply reduced. This is accomplished with the following compensator

kmod(S) = 8(s 2 + .032s + 0.82) .

(s 2 + 1.2s + 1.2) (s + 8)

or the damping of the complex compensator poles is increased, and the plant model zeroes close to
the imaginary axis are not exactly cancelled. Clearly the loop shape with this compensator is not as

"optimal" as the original, but this control law is more robust against this Ag.

Noting that the problem arose with a modeling error that is associated with lightly-damped

zeroes, the critical Ag was at a frequency (co = 1 r/s), where Ig(jm)l was relatively small as shown

in Fig. 15. Hence, obtaining a good model at this frequency is important. Furthermore, by
attempting to cancel those lightly-damped zeroes in the plant, the original controller was very
sensitive to their location. Increasing the damping of the compensator poles, as in a classical notch
filter, made the loop more robust against the uncertainty in the location of these plant zeroes.
(Incidentally, this can be accomplished with a modified LTR procedure, as noted in Ref. 12 and in
another paper in preparation.)

As a final remark, it is observed that lightly-damped zeroes in the compensator are different
from similar zeroes in the plant since through the design and implementation of the compensator,
the location of its zeroes may be more accurately def'med.
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5. Conclusions

Quantitative criteria are presented for model (or controller) simplification. The reduced
order model (or controller) must well approximate the full-order system in the (multivariable)
crossover region for stability, and stability robustness, to be assured. Bounds on the model-
simplification error were noted, and if the bounds are satisfied, stability is assured. It was also



notedthat themodelreductioncriteria werefunctionsof thecontrol law, andby synthesizinga
robustcontrollaw, thecriteriacouldbeeasierto satisfy.

A numericalprocedure,consistingof stablefactorizationwith weightedbalancingof
coordinateshasbeenshown,by example,to meet the abovecriteria. The exampleinvolved
reducinganeleventhorderlinearmodelof anelasticaircraftto obtainafourth-ordermodelleading
to thedesiredsix transferfunctions.

Finally, anotherexampledemonstratedthe importanceof obtaining good agreement
betweenthe full- and reduced-ordermodel in the crossoverregion, even wherethe transfer
function(or functions)haverelativelysmallmagnitude.Furthermore,theexampledemonstrated
thatanapparentlyrobustcontrollercould in factamplify smallerrors,andleadto unstableresults.
Theproblemwouldoccurwith anycontrollaw thathadtheeffectof cancellinglightly-damped
transmissionzeroesof theplantmodel.
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Abstract

The vehicle to be augmented is representative of a

large supersonic transport, with first fuselage

aeroelastic mode frequency at six rad/sec, very close to

the two rad/sec short-period mode. An inteyrated

flight- and aeroelastic-mode control law is synthesized
using a previously developed model-following

synthesis approach. This technique, designed to yield a

desired closed-loop rather than an open-loop loop

shape, involves a specific LQR formulation leading to

the model-following state-feedback gains. Then the use

of asymptotic loop transfer recovery is utilized to

obtain the compensation that recovers the LQR

robustness properties, and which leads to an output-

feedback control law. A classically designed control law

is also developed for comparison purposes. The

resulting closed-loop systems are then evaluated in

terms of their performance and multivariable stability

robustness, measured in terms of the appropriate

singular values. This evaluation includes the use of

approximate literal expressions for those singular

values, expressed in terms of literal expressions for the

poles and zeros in the vehicle transfer-function matrix.

I', is found that the control laws possess rough]>,

equivalent performance and stability robustness, and

the characteristecs limiting this robustness are traced to

some specific loop gains and the frequency and

damping of the open-loop aeroelastic mode dipole.

Furthermore, closed-form literal expressions for these

characteristics are presented in terms of the stability

derivatives of the vehicle. Insight from such an

analysis would be hard to obtain from a strictly
numerical proceedure.

1. Introduction

The supersonic and hypersonic capabilities of

advanced aerospace vehicles and the use of extremely

light meta_c or composite materials in them can lead
to vehicles with signihcant dynamic coupling between

the rigid-body and elastic motions. Ref. 1 and 2, for

example, specifically addressed this coupling at the
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earliest stage of system modeling and flight-control

synthesisin.

Augmentation of an aeroelastic vehicle's open-

loop dynamics via feedback is often necessary to
provide sufficient levels of stability and performance

(e.g., handling qualities). Feedback is used to stabilize

the attitude and or aeroelastic responses (such as static

aerodynamic instability or flutter) or just augment

damping. Crossfeeds may also be used to improve the

dynamic responses. And the control-law must ensure

this stability and performance in the presence of

vehicle modeling errors (i.e., robustness). For

aeroelastic vehicle applicatinns, modeling errors can

ari,,,c irom uncertainty in the aerodynamic model and

neglected high-frequency structural modes both

leading to uncertainty in the pole/zero locations in the
vehicle transfer functions, for example.Such control

objectives have been noted in the literature 3"9.
_-'If possible, the vehicle model (used in control

synthesis) should aid in the understanding and thereby

provide insight regarding the vehicle physics, exposing

key dynamic characteristics and their causes. This can

be achieved by developing literal expressions for the

vehicle transfer functions (gains, zeros, and poles) in

terms of vehicle model parameters, such as stability

and control derivatives or vibrational characteristics,

which have their genesis in the fundamental vehicle

geometric shape and structural layout. 2,93° Models of

this type can be an extremely powerful tool in open-

loop or closed-loop design3 _
The control synthesis for an aeroelastic vehicle,

and the systems' analyses specifically using a literal

model, is the subject of this paper. An aeroelastic

vehicle model is briefly presented and deficiencies in

the vehicle dynamics are noted. Control objectives are
stated and sufficient conditions ensuring an acceptable

design are given. A new approach to implicit model

following (IMF) control synthesis _2A3 is briefly

discussed and applied to the vehicle model. A classical

control synthesis approach is also considered for the

purposes of comparison. The resulting compensators
and closed-loop systems are analyzed with a literal

model to expose sources of system characteristics that

limit the closed-loop system stability robustness. It will

be shov,'n, for example, that major among these

critical characteristics are the frequency and damping of

the vehicles first aeroelastic mode dipole, and closed-
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form expressions for these terms are presented in
terms of the vehicle stability derivatives.

2. The Vehicle Model For Feedback Synthesis
The configuration to be considered (from Refs. 2

and 10) is a large supersonic aircraft of reasonably
conventional geometry with a low-aspect ratio swept
wing, conventional tail, and canard. Controlled inputs

consist of elevator 5E and canard (located near the

cockpit) deflection 5¢. The reference flight condition is

level flight at Mach 0.6 and altitude 5,000 ft.
The complete non-linear modelling of this

vehicle was the subject of Ref. 2, and the development
of low order linear models for control synthesis was
considered in Re/. 10. A fourth order state space
realization and the corresponding transfer functions
for this linear model are given in Tables 1 and 2. This
model involves the small perturbation longitudinal
dynamics of the effective short period and first
aeroelastic modes. The responses of interest are the

rigid-body angle of attack a, rigid-body pitch rate q, and
pitch rate q' measured at the cockpit. Here, rigid-body

a and q are the angle of attack and pitch rate associated
with the vehicle mean axes. An approximate
measurement of q can be obtained from a rate gyro
located at the anti-node of the first elastic structural

mode, and then lowpass filtering of the higher-
frequency modes. The effects of such filtering will not
be specifically addressed, but it would add additional
phase loss in the loops, which is considered in the
robustness analysis

Table 1. Elastic Aircraft

:_t) = Ax(t) + Bu(t)

y(t) = Cx(t)

a (rad) "] [8 E (rad) 1
= q (rad/s)[ =y ,u

q' (rad/s)J _c (rad)J

-0.517 3.85 0.150 4.24

-9.39 -0.318 -0.523 -4.67

A-- 0.0438 0.0164-0.0128-2.06

-0.0591 -0.0165 0.764 -0.986_

-292. -182. "

-598. -424.

B = 53.7 -31.2

-38.4 17.7

I 0.000480 -0.0000247 -0.0188 -0.0286 7C = 0.00147 0.00170 -0.0264 0.0549 ]
-0.0222 -0.0213 -0.0372 0.0687 _]

Table 2. Elastic Aircratt Transfer l_unctions

a(s)/_E(S) = -0.036(s - 0.018 --.j4.9)(s ÷ I50.)/d(s) rad/rad

q(s)/SE(s) =-5.0(s _-0.36)(s ÷ 0.11 _ j4.9)/d(s) rad/s/rad

q'(s)/_(s) = I5.(s + 0.040)(s - Z9)(s + 4.0)/d(s) rad/s/rad

cz(s)/$c(S) = 0.0044(s _- 1.8 _+i9.0)(s _- 200,)/d(s) rad/rad

q(s)/6c(S) = 0.80(s - 0.33)(s + 1.3 = j9 1)/d(s) radlsfrad

q'(s)/Sc(s) = t5.(s _-0.056)(s + 0.73 ± j2.9)/d(s) rad/s/rad

where dLs) = (s * 0.47 71.2)(s ÷ 0.44 : j6.0)

A fourth-order model was developed to
accurately approximate the appropriate frequency
responses of a twelfth-order model, in the anticipated

critical frequency range of 1 to 10 rad/s. Figures I thru
3 show some of these frequency responses from

elevator input 5_ . (It is noted that the next significant
unmodeled aeroelastic mode frequency, is above 13
rad/sec.) From Table 2 and Figures 1 thru 3, the major
open-loop dynamic deficiency is the level of damping
of the short period and aeroelastic modes.
Furthermore, the aeroelaslic mode contributes

significantly to the vehicle's dynamic responses.

3. ClassicalControlSynthesis
A classicaldesign approach consistsofsequential

singleloop closures,using root loci,and relyingupon

knowledge of the physics of the elasticaircraftfor

synthesisstrategy.

Consider a 2 x 2 system from Table 2 with the

following notation.

q(s)= gu(s)Sds)+ g12(S)Sc(S)

q'(s)= g21(s)SE(s)+ g22(s)S¢(s)

(I)

First,the q'/Sc loop isclosedtoimprove the aeroelastic

mode damping. Recallq'and 8c are a co-locatedsensor

and actuatorpairnear the cockpit.The controllaw 8c

= 8c'-k22q'yields

• k22g_2g21 .... kz2922 "5 '
q = _u - T ¥ _--_;°s + g12_ "1 + k22922) c

g_n ga2 ,

(2)

n,2
The rootlocus for I ÷ k22"_ ,where niiand d are the

numerator and denominator polynomials,

respectively, of gi_, is shown in Figure 4. A gain of kz2 =
0.05 rad/rad/s increases the aeroelastic mode damping

by over 60% of the open-loop value.
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An elevator-to-canard crossfeed is now
introduced to reduce aeroelasticmode excitationfrom

the elevator. Interconnecting "up canard" with "up
elevator" will reduce aeroelastic mode deflections

from the elevator because the fuselage mode shap_ is
similarto the fundamental bending mode shape of a
slenderbeam.

The crossfeed8¢'= l<cf8_ yields

q = gu + kl_(gngi21+ k22gz2"gug21) + 1%_g_2 (3)

This can be simplifiedwith the identity7

det[G] = det[ gu g_2] xCcLg21 g22 = gllg22"glig21 =
(4)

where Vc is the transmission zero polynomial
corresponding to the plant in eq. (1).

Vc(S)= 89(s+ 0.081)(s+ 0.46) (5)

Substitution of eq. (4) into eq. (3) yields

nu + k12wC + kcfn125_
q " d + kzzn22 (6)

Itisnow evident the crossfeedhas the effectof

moving the zeros of the q/8 E transferfunction(with

the q'/6c loop closed)from n_ ÷ k22wc ton_2. The

n12
rootlocusfor1 + kcf isshown in Figure5.A

nll + k;_2_C

gain of kcf = -1.5 rad/rad results in almost perfect pole-
zero cancellation for the aeroelastic dipole in the

effective q/B_ transfer function.

Finally, the effective q/8_ loop is closed to furter

improve the short period damping. The control law 6E

= p6 -kuq yields

P(gn + k_.(gngzg" 812921) + k_ g12)
q = 1 + l<llg;..?" + ku(g n + k_.(gngl2 " g_zgz_) + kcf g_2) 8

(7)

where p isthe gain on the pilotinput8. The rootlocus
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for I + kll d + kz2n22 tS shown in Figure 6, as

well as the final closed-loop pole locations for a gain oE

k n = -0.0.5 rad/rad/s.

With some block diagram manipulation, the

closed-loop system can be represented as in Figure 7.
Table 3 contains the effective closed-loop transfer

functions corresponding to the pilot command 5,

while Figures 1 thru 3 show the corresponding

frequency responses for the augmented vehicle. Short-

period damping has improved from _,_, = 0.36 (see

Table 2) to _sp = 0..54 (a 50% increase), while the first

aeroelastic mode damping has improved from _, =

0.073 (see Table 2) to _,; =, 0.12 (a 64% in(:re_e). These

improvements are apparent in the closed-loop

frequency responses.

Significant improvement in the rigid-body (0t

and q) frequency response shapes is also achieved.

Besides improved short period damping, the

aeroelastic mode pole-zero "saw tooth" located near 6

rad/s in Figures I and 2 are virtually eliminated when

compared to the corresponding open-loop behavior.

This is a result of improved closed-loop pole-zero

cancellations (see Table 3) as desired in the classical

control synthesis. Or the aeroelastic mode has been
rendered undisturbable from pilot input.

4. IMF Control Synthesis 12,13

A newly developed technique for the synthesis

of flight-control laws will now be outlined. Although

LQR and LTR concepts are used in the formulation of

the algorithm, thisapproach is fundamentaly different

I183



¢

w

2

_1_,..f- .--,_- )¢

-2 i

-4; . ..

I
!

-6:

i

.g
-2 • t L, 1

Re.al

x : -0.55:i_.1 o : -0.35
-0.75=j6.0 .0.71.,-j5.9

• (kn = -0.05) : -0.70zjl.:

-0.75:j6.0

Figure 6. Root Locus For q/6 E Loop Closure

Figure 7. Classically Designed Closed-Loop System

from LQG/LTR methodology 4. LQG/LTR addresses the

problem of obtaining spedfied open-loop shapes, while

the approach taken here is to synthesize a control law

that yields a desired closed-loop shape.

The system to be controlled is represented as

_t) = Ax(t) + Bu(t) (8)

y(t) = I-Ix(t)

and the model of the desired dynamics to be followed
is

_%(t) = Amxm(t) + BinS(t) (9)

ym(t) = Hmxm(t)

_ =-I00. 8

where 8 represents the input from the pilot. The error
vector

e(t) = y(t) - ym(t) (10)

is constrained to be governed by stable, homogeneous

dynamics

e(t) = -Ge(t) (1I)

where G is to be selected in ,he synthesis process. The

model-following control law is obtained by solving the

LQR problem with the following objective function.

I = ]_" [(e +Ge)rQ(e *Ge) + uVRul dt (12)

If the product HB is square and invertible, and the

same for HmB m , and if G is chosen as G = - HmAmHm 1,

then perfect model following is achieved

asymptotically as R in Eqn. 7 approaches the null

matrix. If this is the case, then the closed-loop poles

approach the model poles (for G as defined above) and

any open-loop plant finite transmission zeros (or their

stable miror image)32

The solution to this problem iss the first step of the

control law synthesis, yielding the state-feedback
control law

u = K,x + K88 (13)

For the elastic aircraft model in Table I, rigid-

body angle cff attack and pitch rate a and q, are the

responses selected for modei folio" ing, so that the

handling characteristics will be improved. Also it is

desirable that the response approximate that of a rigid

vehicle. With this selection, the open-loop plant
transmission zeros are located at -23. 1/s and 35. l/s,

and HB is square and inverdble.

The model of the desired dynamics is chosen to
be

Table 3. Closed-Loop Transfer Functions

Classical (_ontrol Synthesis

cds)/B(s) = 3.7(s + 0.70 ± jS.9)(s + 160)/d(s) tad/tad

q(s)/8(s) = 0.025(s + 0.35)(s + 0.71 ± jS.9)/d(s) rad/s/rad

q'(s)/8(s) = 5.1(s + 0.049)(s + 1.0 _ j6.6)/d(s) rad/s/rad

where d(s) = (s + 0.70 -t. jl.1)(s + 0.75 ± j6.0)

IMF CgnWgl Sy'nthesi_

¢z(s)/8(s) = -0.0062(s + 0.22 ± jS.l)(s + 150)/d(s) rad/rad

q(s)/8(s) = -0.87(s + 0.36)(s _- 0.34:1: j5.1)/d(s) rad/s/rad

q'(s)/8(s) = 2,0(s + 0.042)(s - 3.6)(s ÷ 4.5)/d(s) rad/s/rad

where dis) = (s+ 0.56± jl.l)ts+ 0.73 ± j5.8)
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oba.(s)/6(s) = -3.5/(s + 0.89 -j0.91)

qm(s)/5(s) = -3.3(s _"0.36)/(s + 0.89 +-j0.9I)

Note that the short-period mode is well damped. With

this selection, H m is square and also invertible. The

short-period poles will approach those of the model.

the aeroe[astic mode poles ,,rill move toward the plant

transmission zeros (or their stable mirror images via

the optimal control formulation), and the ca and q time

and frequency responses will be shaped to better

approximate those of a rigid vehicle.

With the state feedback gains K and K_ so

determined, compensators will now be synthesized.

using the loop transfer recovery procedure-L7,_3, which

will then yield the output-feedback loop structure in

Figure 9. Although the a and q responses were those

used in the model-following step, they are not the
measurements to be used for feedback. The feedback

measurements are the same used for the classical

design, q' and q. This selection leads to minimum

phase transmission zeros, for the loop-transfer

recovery, located at -0.081 and -0.46 I/s.

Figure 8 shows the resulting feedback

compensators, prefilter stick gains, and closed-loop

structure after the loop-transfer recovery proceedure is

completed, and some straight-forward pole-zero

cancellations are performed on the compensators.

Note the compensators consist of relatively simple

tend-lag and lag-lead filters of second order. Table 3

contains the effective closed-loop transfer functions

corresponding to the pilot command 6. while Figures l

thru 3 show the corresponding frequency responses.

Short period damping has improved from _sp = 0.36 to

_sp = 0.45 (25% increase) while the first aeroelastic

mode damping has improved from _¢. = 0.073 to _fl -

0.12 (64% increase).

These improvements are also apparent in the

closed-loop frequency responses. Besides improved

short-period damping, the aeroelastic mode pole-zero

"saw tooth" located near 6 rad/s in the angle-of-attack

and pitch-rate responses in Figures 1 and 2 is reduced

by roughly 10 db, when compared to the corresponding

open-loop response. This is a result of improved

0.01 _s÷O 34X f-O Di

_s÷O.OllIX J*0.46) i

+ ,Y,m_I-o_,..0.0sl x,-_ a_/,

_¢,) I . --I I
_' Aircr_ t'l .

r_
I !,.0_I_,._._6) i _

FI[.8, LMF Designed Closed-Loop System

_)

q'(s)

I
I KO) L.,
j i _

Fig. 9, Generic Closed-Loop System

closed-loop pole-zero cancellations (see Table 3) as

desired in the [MF control synthesis (i.e., following a

rigid-body model).

5. Robustness Analysis

Now consider the generic feedback Ioop

structure in Figure 9, which is a generalization of the

closed-loop systems in Figures 7 and 8, with response

vector y, control inputs u, commands Yc , and plant,

compensator, and prefilter transfer function matrices

G(s), K(s), and P(s), respectively. The feedback

compensation in Figure 9 is assumed _o be synthesized

with a design model G(s), but the "true" plant transfer

function is taken to be G'(s). Specifically, consider

generic phase loss in each input channel to the plant,
or let

G'(s) = G(s) (e" _s I) (14)

This phase loss can represent, for example, unmodeled

high-frequency dynamics originating from structural

modes, actuators, sensors, etc. Rewriting G'(s) as

G'(s) = G(s)(I + E(s)) (t5)

it can be shown that

E(s)=(e "t_- l)i (16)

where E(s) is the so called plant input multiplicative
error. 4

The "true" closed-loop system poles are roots of

the "true" characteristic equation, obtained from

det[I + K(s)G(s)(I ÷ E(s))] = 0 (17)

[f the nominal closed-loop system [s stable and the

required number of encirclements of the critical point

in Nyquist stability theory is the same for both

nominal and "true" systems, then a sufficient

condition, developed from Eq. (17), guaranteeing

closed-loop stability under E(s) 4 is

_E(jca)] < __I + (K(jca)G(ica)) q] , 0 _ ca _; o. (18)

Eq. (I8) is an indication of the system's multivariable

stability robustness margin.

Figure 10 indicates the stability robustness of the

classically designed closed-loop system, with the effect

of multiplicative error due to generic phase loss in

each input channel displayed as well. Note from

Figure I0 the characteristic limiting the stability

robustness is the dip in gfI ÷ (KG) q] near 6 rad/s. In

fact, the phase loss allowed using this criteria is limited

to _ < 0.3 s.
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Figure li indicates the stability robustness

properties of the IMF design, again with the effect of

generic phase loss displayed. Note again a similar

characteristic limiting the robustness of this loop. Here

the allowable phase loss is : < 0.35 s, only slighty better

than the previous result.

The question now turns to the causes for this

limiting characteristic. Literal expressions for the

vehicle transfer function poles and zeros in Table 2 are

available from Ref. 10 for further analysis. Before this,

however, a literal expression for _[I + (KG) "1] is

necessary. The approach to be taken here is similar to

that presented in Ref. 1I.

With reference to Figure 9, consider a 2 x 2
closed-loop system with

f kll k12 ],KCjo_)=
k21 kn J

all a12]I + (K(jo))G(j¢o))4 --
L a21 a22

(19)

where

k21g12 + k22922
all=I +

A

kllg u ÷ kl2g22
a12 =.

A

k21gll ÷ k22g21
a21 =.

"A

a22 = 1 + kugll + kl2g2_
a

(20)

Figure 1I. IMF Design Stabili W Robustness Analysis

A = det [KG} = [k_.tk22- k12k23] (g_lg_" gI2921]

The minimum and maximum singular values of I +
(KG) "_ are given as

0(I + (KG) "_] = X_/2 [(I + (KG)-D(I + (KG)'D*] (2I)

_I + (KG) -_] =X _/2 [(I ÷ (KG)'I)(I + (KG)'D']

where t and [ denote the minimum and maximum

eigenvalues, respectively. _k and K solve

det[kI - (I + (KG)4)(I + (KG)4) "] -. k2 - (k + [)l + k_ = 0 (22)

where

l+ _= tall 12+ 1a1212+ la2_ 12+ Ia2212 (23)

_ = I a_a22 - a12a2112

If K ,, [, then from Eq. (23), _Kis approximately given as

I a_1a22 - a12a21 12

__- lalll2 + #a12#2 + la2i#2 + la_212 (24)

or

I al_a22 - a12a2_ l

o[I+(KG) "I]=(IaI _12 + Ia_212 + la2112j,. Iaz212)I12 (25)

From inspection of Figures 10 and 11, it can be seen

that the condition k ,, _. (or __ ,, o_) is reasonably

satisfied.

Substitution of Eq. (20) into the numerator and

denominator of Eq. (2,3. yields
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alla22 - a12a21I =

It--t.l l + kllgll + k12921 + k21g12 + k_gz2 ÷ At (26)
A

12la u + [a_212+ la2_12+ !a_t2=
I

t-t2'(tk2]gT2÷k_g_ ÷AI2÷ Ik[lg, i 2 "¢"k12g2f 12 +
3

Ik::g 11+k_g21t2÷ rk llg_l +k1_21.'312)

These can be further _:mplif{ed with the fotlowing
observation7

I÷ kug u 4".k,zgn ÷ kzlgu ÷ k_gn. ÷ .3,=

0¢i
det [I4".KG] = -- (27)

0ol

a = det [KG] = --
0ol

where 0¢t and 0oi are the system's closed-loop and

open-loop characteristic polynomials, respectively, and

_VKand '/G are the compensator and plant transmission

zero polynomials, respectively. With the notation

i,j,p,q = 1,2
k,ig_ = OoI

where nk ' and n_pq are the numerator polynomials of

kij and gpq ,respectively, substitution of Eqs. (26) and
(27) into Eq. (25) yields the following literal expression

for _I 4".(KG)4].

10dI
oil *(KG)'_I=(InII)2 + )n1212 ÷ in2]12÷ n_12)l/1

nil _ nk.ng,_+ nkun_n ÷ _/Kq/G

hi2 = nk ng,z _-nk, n14n

n21 = nk_ng" 4".nk ng_

n22 = nk ng" + nk,,ngn + _/K_/G

(287

Observe that the "zeros" of _{I ÷ (KG) q] are

nothing more than the closed-loop poles, while the

"poles" of o[I ,- (KG) "l] depend on the plant's and

compensator's transfer-function zeros as well as their
transmission zeros. This result was first noted in Ref.

11, but the transmission zeros _VKWc were related to

the so called coupling numerators.
Now consider the classically designed closed-

loop _ystem shown in Figure 7. Here

glt = q(s)/_(s)

gu = q(s)/Sc_s)

g2t = q'(s)/SE(s)

g22 = q'(s)/Sc(s)

'_]G(s)= 89(s + 0.081)(s 4.. ].46)

k,i= nh, =_/q

k]2 = nh2 = 0

k,,l = n_ = 8c/q

kn = n_ = 8c/q'

_'K= kllkZ2 "kuk21

I(9_4".iI÷(KG)-q - 0.70_l.l)(jco0.75±j6.0) 1
0.941 (jo ,- 0.22)(jc0 4".3.I_+i3.8) I

(29)

It is evident that the augmented first aeroelastic mode
poles, denoted

S2 + (2_CO)d S + (CO2)d.= S2 _- 15S _-37 = S - 0.75± j60 (30)

and their low damping are responsible for the

previously discussed critical stability robustness feature
near 6 rad/s in Figure 10.

From the classical design (see Section 3) and
Figure 4, these poles are primarily a function of the

q'/8 c loop c[osure. With increasing q'/8 C root locus
gain k22 , these augmented aeroelastic mode poles

originate from their open-loop locations

sz 4".(2_¢o)_,s + (toZ)q = sz *-0.88s *-36 = s *-0.44 ± if0 (3I)

and migrate towards their corresponding aeroelastic

mode zeros in the q'/8 c transfer function (see Table 2),
denoted as

s2 * _,(2_oa)_s + q(o_2)q = s2 + 1.5s ÷ 8.9 = s 4".0.73 ± j2.9 (32)

Yielding the closed-loop locations in Eq. (30) for the
selected value of k22.

From Ref. 10, the open-loop natural frequency
and damping terms of the aeroelastic mode poles and
zeros in Eqs. (31) and (32) are approximately given by

Z

(1 * _T )Mn FL,

(Od-)i,= (%2 _ Fin, ) + tc°12- F1n,)

= 35 + 2.0 (33)

Z

M%F,, + [Z%_vr, (I + _-_L,M%IF_.

(2_oa)_, - (2_a._ -Flh ,) + (ohz. Fln,)

= 0.62 + 0.35

Mn, ÷ ¢h'(x)(l
(0)12-FIn,)Ma c + VTIM_

q(c_-)_.- M_c. el,(x)Fl&: (_l,(X)

= 2.0 - (-6.5) (34)

q(2_a)q&' ,,,(2_i0_l. FI n)Mag ÷ Ol,(x)MqFI, k . *l'(x)(I ÷ VT i V.rt M_FI_
Mac - Ùi'(x)F_ (ohz-Fin)Mac

= 0.82 (-0.67)

with gii available from Table 2 and kij available from
Figure 7. Substltution of the above quantities into Eq.
(28) yields
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w.th the folIowmg numericaI value.,,:

Z._ -0.416 ft/s 2 (I -,- Z_._..) = 103
VT _ =

'1

= -0.00267 I/s Me, = -333 I/s:'

Mq=-O.830 l/s M_ =-0.0655 1/s 2

Mq, = -0.00390 1/s M,s _ = 0.809 1/s 2

F, = -1,O40 1/s 2 F 1 = -7S4 1/s
• ,+ q

FI&.=-631 1/s 2 (co_2-Fin,)=.'k4.8 1/s 2

(2_tcol-Ftn)=0.621 1/s O((X)=0.021 ft/ft

The above parameters arc. functions uf lhe flight

velocity, VT,' rigid-body, and aeroetastic aerodynamic

stability derivanves Z,, M,, and F,, ; first in vacuo

elastic mode shape, vibration frequency co 1 and

damping ratio ._1. These vehicle parameters appear

explicitly in the linear equations of motion for the
elastic aircraft t° listed belov.,.

z+,
_=9-7 _+'(l*v _q+'--n_'_nL "_- 8c+--8cT, T_ VT, V], VT_

q= M_a * Mqq * M.n, q_ -,- Mn, _ . Mrs, 8E + M_,. 8c

= . . . ,-_r . FI + - 8[Zrl} l:Lu * F1, q {_12 Fin)l"11 ,..._m: n=)q_ Fla .

+FI_ 8C

(35)

q' = q- ¢h'fx)fl_

As seen from Eq. (33), the frequency of the open-

loop aeroelastic mode poles is primarily due to the

elastic mode structural frequency and aerodynamic

stiffness (i.e., (_t 2 -Fln)). Also, the inherent low

damping in this mode is primarily due to the elastic

mode structural and aerodynaauc damping (i.e., (2_da 1

-F_,) ). However, note also that approximately 1/3 of

the total damping is due to aerodynamic coupling
between the rigid and elastic degrees'of freedom. It is

now clear which key vehicle and compensator
parameters contribute to the critical stability robustness

properties of this closed-loop syslem.

Now consider the IMF design closed-loop
system shown m Figure 8. Here

gu = q(s)/_(s)

g_2 = q(s)/_c(S)

g2; = q'(s)/_(s)

g_ = q'(s)/ac(s)

_c(S) = 89(s * 0-081)(S + 0.46)

k u = 6_(s)/q(s)

kl 2 = _<s)/q'(s)

k2_ -- 6c(s)/q(s)

k22 = 8c(s)/q'(s)

_K(S) = 0.00091(S+0.060)(', 0,35----j0.21)(S-1.9)

with g,i available from Table 2 and kii available from

Figure 8. Substitution of the above quantities into Eq.
(28) yields

I
_l CKG) "1] (jm+0.56:lI1)(1_-0.73::5.8',* "- (36;

066 l(joo- 0.83 : il O)(jcu- 4 6) I

[t is evident that again the augmented firs.' aeroetastlc

mode poles

s: +- (2r_¢O)c12S*- (cO2)ch = s2 ,- 1.55 ,- 34 = s *- 0.73 : ]5,8

and their low damping are responsible for the critical

sta_ilitv robustness feature near 6 rad/s in Figure 11

From ihe IMF design (see Sectioq 4), these poles

originate at their open-loop locanon and migra,.e
toward the transmissmn zerns (or their stabie mirror

image) defined through the model-foilowing

formulation, as the control weight;rig in the loss

function is reduced (u" the loop gams are increased).

Although literal ;.pproximat,ons for these

transmission zeros are still being developed, the above

express!ons for the open-loop aeroelastic poles again

reveal the major source of these critical characteristics.

6. Conclusions

An integrated flight- and aeroelastic-mode

control law was synthesized for a very flexible

supersomc vehicle, using a previously developed

model-fullowing synthesis approach. This technique,

designed to yield a desired closed-loop rather than an

open-loop loop shapes, involves a specific LQR

ft,rmulation leading to the: model-following state-

feedback gains. Then the use of asymptotic loop

transfer recovery is utilized to obtain the

compensation that recovers the LQR robustness

properties, and which leads to an output-feedback

control law. A classically designed control law was also

developed for comparison purposes, and parallels

between the results obtained with the two approaches
are observed.

The resulting closed-loop systems were

evaluated in terms of their performance and
multivariable stability robustness, measured in terms

of the appropriate singular values. This evaluation

utilized approximate literal expressions for those

singular values, expressed in terms of literal

expressions for the poles and zeros .of the vehicle
transfer functions. It was found that both control laws

possessed equivalent performance and stability
robustness, and the characteristics limiting this

robusmess were in both cases traced to some specific

step in the synthesis process, as well as the locations of

critical open-loop poles and zeros (or transmission

zeros). Furthermore, closed-form literal expressions for

these characteristics were presented in terms of the

stabilityderivatives of the vehicle. The insight gained

from this analysis is considered invaluable to the

control system designer, and unavailable from strictly

numerical analysis.
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